scholarly journals A rationally designed small molecule for identifying an in vivo link between metal–amyloid-β complexes and the pathogenesis of Alzheimer's disease

2015 ◽  
Vol 6 (3) ◽  
pp. 1879-1886 ◽  
Author(s):  
Michael W. Beck ◽  
Shin Bi Oh ◽  
Richard A. Kerr ◽  
Hyuck Jin Lee ◽  
So Hee Kim ◽  
...  

An in vivo chemical tool designed to target metal−Aβ complexes and modulate their activity was applied to the 5XFAD mouse model of Alzheimer’s disease (AD) demonstrating the involvement of metal−Aβ in AD pathology.

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Rachel E. Lackie ◽  
Jose Marques-Lopes ◽  
Valeriy G. Ostapchenko ◽  
Sarah Good ◽  
Wing-Yiu Choy ◽  
...  

Abstract Molecular chaperones and co-chaperones, which are part of the protein quality control machinery, have been shown to regulate distinct aspects of Alzheimer’s Disease (AD) pathology in multiple ways. Notably, the co-chaperone STI1, which presents increased levels in AD, can protect mammalian neurons from amyloid-β toxicity in vitro and reduced STI1 levels worsen Aβ toxicity in C. elegans. However, whether increased STI1 levels can protect neurons in vivo remains unknown. We determined that overexpression of STI1 and/or Hsp90 protected C. elegans expressing Aβ(3–42) against Aβ-mediated paralysis. Mammalian neurons were also protected by elevated levels of endogenous STI1 in vitro, and this effect was mainly due to extracellular STI1. Surprisingly, in the 5xFAD mouse model of AD, by overexpressing STI1, we find increased amyloid burden, which amplifies neurotoxicity and worsens spatial memory deficits in these mutants. Increased levels of STI1 disturbed the expression of Aβ-regulating enzymes (BACE1 and MMP-2), suggesting potential mechanisms by which amyloid burden is increased in mice. Notably, we observed that STI1 accumulates in dense-core AD plaques in both 5xFAD mice and human brain tissue. Our findings suggest that elevated levels of STI1 contribute to Aβ accumulation, and that STI1 is deposited in AD plaques in mice and humans. We conclude that despite the protective effects of STI1 in C. elegans and in mammalian cultured neurons, in vivo, the predominant effect of elevated STI1 is deleterious in AD.


2016 ◽  
Vol 52 (1) ◽  
pp. 223-242 ◽  
Author(s):  
Patricia R. Spilman ◽  
Veronique Corset ◽  
Olivia Gorostiza ◽  
Karen S. Poksay ◽  
Veronica Galvan ◽  
...  

2014 ◽  
Vol 35 (8) ◽  
pp. 1792-1800 ◽  
Author(s):  
Michael B. Dinkins ◽  
Somsankar Dasgupta ◽  
Guanghu Wang ◽  
Gu Zhu ◽  
Erhard Bieberich

2020 ◽  
Vol 77 (1) ◽  
pp. 99-112 ◽  
Author(s):  
Luka Rejc ◽  
Vanessa Gómez-Vallejo ◽  
Xabier Rios ◽  
Unai Cossío ◽  
Zuriñe Baz ◽  
...  

Background: Transthyretin (TTR) is a tetrameric, amyloid-β (Aβ)-binding protein, which reduces Aβ toxicity. The TTR/Aβ interaction can be enhanced by a series of small molecules that stabilize its tetrameric form. Hence, TTR stabilizers might act as disease-modifying drugs in Alzheimer’s disease. Objective: We monitored the therapeutic efficacy of two TTR stabilizers, iododiflunisal (IDIF), which acts as small-molecule chaperone of the TTR/Aβ interaction, and tolcapone, which does not behave as a small-molecule chaperone, in an animal model of Alzheimer’s disease using positron emission tomography (PET). Methods: Female mice (AβPPswe/PS1A246E/TTR+/–) were divided into 3 groups (n = 7 per group): IDIF-treated, tolcapone-treated, and non-treated. The oral treatment (100 mg/Kg/day) was started at 5 months of age. Treatment efficacy assessment was based on changes in longitudinal deposition of Aβ in the hippocampus (HIP) and the cortex (CTX) and determined using PET-[18F]florbetaben. Immunohistochemical analysis was performed at age = 14 months. Results: Standard uptake values relative to the cerebellum (SUVr) of [18F]florbetaben in CTX and HIP of non-treated animals progressively increased from age = 5 to 11 months and stabilized afterwards. In contrast, [18F]florbetaben uptake in HIP of IDIF-treated animals remained constant between ages = 5 and 11 months and significantly increased at 14 months. In the tolcapone-treated group, SUVr progressively increased with time, but at lower rate than in the non-treated group. No significant treatment effect was observed in CTX. Results from immunohistochemistry matched the in vivo data at age = 14 months. Conclusion: Our work provides encouraging preliminary results on the ability of small-molecule chaperones to ameliorate Aβ deposition in certain brain regions.


2021 ◽  
Vol 22 (16) ◽  
pp. 8633
Author(s):  
Yi-An Chen ◽  
Cheng-Hsiu Lu ◽  
Chien-Chih Ke ◽  
Sain-Jhih Chiu ◽  
Chi-Wei Chang ◽  
...  

Epigenetic regulation by histone deacetylase (HDAC) is associated with synaptic plasticity and memory formation, and its aberrant expression has been linked to cognitive disorders, including Alzheimer’s disease (AD). This study aimed to investigate the role of class IIa HDAC expression in AD and monitor it in vivo using a novel radiotracer, 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]TFAHA). A human neural cell culture model with familial AD (FAD) mutations was established and used for in vitro assays. Positron emission tomography (PET) imaging with [18F]TFAHA was performed in a 3xTg AD mouse model for in vivo evaluation. The results showed a significant increase in HDAC4 expression in response to amyloid-β (Aβ) deposition in the cell model. Moreover, treatment with an HDAC4 selective inhibitor significantly upregulated the expression of neuronal memory-/synaptic plasticity-related genes. In [18F]TFAHA-PET imaging, whole brain or regional uptake was significantly higher in 3xTg AD mice compared with WT mice at 8 and 11 months of age. Our study demonstrated a correlation between class IIa HDACs and Aβs, the therapeutic benefit of a selective inhibitor, and the potential of using [18F]TFAHA as an epigenetic radiotracer for AD, which might facilitate the development of AD-related neuroimaging approaches and therapies.


Sign in / Sign up

Export Citation Format

Share Document