scholarly journals Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range

2015 ◽  
Vol 3 (4) ◽  
pp. 820-827 ◽  
Author(s):  
Hilal Ahmad Reshi ◽  
Avanish P. Singh ◽  
Shreeja Pillai ◽  
Rama Shankar Yadav ◽  
S. K. Dhawan ◽  
...  

EMI shielding effectiveness values of up to 19 dB are observed in LSMO nanomaterials.

2007 ◽  
Vol 7 (2) ◽  
pp. 549-554
Author(s):  
Yonglai Yang ◽  
Mool C. Gupta ◽  
Kenneth L. Dudley ◽  
Roland W. Lawrence

Electromagnetic interference (EMI) shielding characteristics of carbon nanofiber-polystyrene composites were investigated in the frequency range of 12.4–18 GHz (Ku-band). It was observed that the shielding effectiveness of such composites was frequency independent, and increased with increasing carbon nanofiber loading within Ku-band. The experimental data exhibited that the shielding effectiveness of the polymer composite containing 20 wt% carbon nanofibers could reach more than 36 dB in the measured frequency region, indicating such composites can be applied to the potential EMI shielding materials. In addition, the results showed that the contribution of reflection to the EMI shielding effectiveness was much larger than that of absorption, implying the primary EMI shielding mechanism of such composites was reflection of electromagnetic radiation within Ku-band.


Nanoscale ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 3308-3316 ◽  
Author(s):  
Caichao Wan ◽  
Yue Jiao ◽  
Xianjun Li ◽  
Wenyan Tian ◽  
Jian Li ◽  
...  

A multi-dimensional and level-by-level assembly strategy is developed to construct free-standing and sandwich-type nanoheterostructures achieving an outstanding EMI shielding effectiveness of ∼50.6 dB in the X-band.


2016 ◽  
Vol 4 (2) ◽  
pp. 371-375 ◽  
Author(s):  
Qing Yuchang ◽  
Wen Qinlong ◽  
Luo Fa ◽  
Zhou Wancheng ◽  
Zhu Dongmei

Graphene nanosheets filled BaTiO3 ceramics with high-performance EMI shielding effectiveness, greater than 40 dB in the X-band at 1.5 mm thickness, were prepared via pressureless sintering.


2013 ◽  
Vol 331 ◽  
pp. 439-442 ◽  
Author(s):  
Ping Li ◽  
Aik Seng Low ◽  
Yue Yan Shan ◽  
Guat Choon Ong ◽  
Xi Jiang Yin

A carbon nanotubes (CNTs) composite and its electromagnetic interference shielding effectiveness (SE) were investigated. Its absorptance, reflectance and shielding effectiveness (SE) were analysed. The CNTs composite has a shielding effectiveness (SE) of more than 25 dB (>99.68%) in frequency range from 30 MHz to 5 GHz. The testing results also demonstrate that the shielding mechanism of the CNTs composite is mainly EMI absorption of electromagnitic radiation. The high SE of the CNTs composite in the study is attributed to a high aspect ratio (>3000) and good conductive network of CNTs within the composite.


2007 ◽  
Vol 7 (2) ◽  
pp. 549-554 ◽  
Author(s):  
Yonglai Yang ◽  
Mool C. Gupta ◽  
Kenneth L. Dudley ◽  
Roland W. Lawrence

Electromagnetic interference (EMI) shielding characteristics of carbon nanofiber-polystyrene composites were investigated in the frequency range of 12.4–18 GHz (Ku-band). It was observed that the shielding effectiveness of such composites was frequency independent, and increased with increasing carbon nanofiber loading within Ku-band. The experimental data exhibited that the shielding effectiveness of the polymer composite containing 20 wt% carbon nanofibers could reach more than 36 dB in the measured frequency region, indicating such composites can be applied to the potential EMI shielding materials. In addition, the results showed that the contribution of reflection to the EMI shielding effectiveness was much larger than that of absorption, implying the primary EMI shielding mechanism of such composites was reflection of electromagnetic radiation within Ku-band.


2019 ◽  
Vol 26 (1) ◽  
pp. 531-539 ◽  
Author(s):  
R. C. Portes ◽  
B. H. K. Lopes ◽  
M. A. do Amaral Junior ◽  
D. E. Florez-Vergara ◽  
S. F. Quirino ◽  
...  

Abstract In this study, the electromagnetic interference (EMI) shielding effectiveness (SE) of polymer composites based on natural graphite in flakes (NGF) and silicone rubber was investigated with the aim to contribute to the development of the technology of electromagnetic shielding materials. This topic has attracted great attention to the aeronautical and aerospace applications, due to the serious problems that EMI can cause to the functioning of electronic devices. According to this, the present work has produced samples of composite materials with variations on the sizes of the filler particles and composition of the samples. The electromagnetic characterization of the samples is given by the Vector Network Analyzer (VNA) in the X-band frequency range (8.2 – 12.4 GHz). The results indicate that the variation of particle sizes is determinant to the SE performance along with the X-band frequency range. Furthermore, the expansion of the range of granulometry allows controlling the curves of the peaks along the X-band.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Rongliang Yang ◽  
Xuchun Gui ◽  
Li Yao ◽  
Qingmei Hu ◽  
Leilei Yang ◽  
...  

AbstractLightweight, flexibility, and low thickness are urgent requirements for next-generation high-performance electromagnetic interference (EMI) shielding materials for catering to the demand for smart and wearable electronic devices. Although several efforts have focused on constructing porous and flexible conductive films or aerogels, few studies have achieved a balance in terms of density, thickness, flexibility, and EMI shielding effectiveness (SE). Herein, an ultrathin, lightweight, and flexible carbon nanotube (CNT) buckypaper enhanced using MXenes (Ti3C2Tx) for high-performance EMI shielding is synthesized through a facile electrophoretic deposition process. The obtained Ti3C2Tx@CNT hybrid buckypaper exhibits an outstanding EMI SE of 60.5 dB in the X-band at 100 μm. The hybrid buckypaper with an MXene content of 49.4 wt% exhibits an EMI SE of 50.4 dB in the X-band with a thickness of only 15 μm, which is 105% higher than that of pristine CNT buckypaper. Furthermore, an average specific SE value of 5.7 × 104 dB cm2 g−1 is exhibited in the 5-μm hybrid buckypaper. Thus, this assembly process proves promising for the construction of ultrathin, flexible, and high-performance EMI shielding films for application in electronic devices and wireless communications.


2017 ◽  
Vol 5 (5) ◽  
pp. 1095-1105 ◽  
Author(s):  
Jun Li ◽  
Hu Liu ◽  
Jiang Guo ◽  
Zhen Hu ◽  
Zhijiang Wang ◽  
...  

Flexible lightweight conductive nanocomposites prepared by self-assembly of gold nanoparticles on charged polymer nanofibers show enhanced EMI shielding effectiveness and mechanical properties.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zi-Jing Zhou ◽  
Zhen-Xing Wang ◽  
Xiao-shuai Han ◽  
Jun-Wen Pu

Abstract Lightweight materials with high electrical conductivity and hydrophobic mechanical properties are ideal materials for electromagnetic interference (EMI) shielding. Herein, the conductive composites with great EMI shielding effectiveness (SE) were successfully obtained by introducing multi-walled carbon nanotube (CNT) and polydimethylsiloxane (PDMS) based on the original structure of natural wood (NW). CNT@PDMS/NW composites were prepared via vacuum-pulse impregnation method and characterized by Fourier transform infrared (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) patterns, hydrophobicity analysis, and EMI shielding performance. As demonstrated, CNT nanosheets were successfully inserted into wood matrices, and hydrogen bonding between CNT nanosheets and cellulose nanofibers induced the fabrication of CNT@PDMS/NW composites. CNT@PDMS/NW composites exhibited excellent EMI SE values of 25.2 dB at the X-band frequency.


Sign in / Sign up

Export Citation Format

Share Document