Lamellar sheet exfoliation of single lipid vesicles by a membrane-active peptide

2015 ◽  
Vol 51 (51) ◽  
pp. 10272-10275 ◽  
Author(s):  
Seyed R. Tabaei ◽  
N. J. Cho

Using total internal fluorescence microscopy, highly parallel measurements of single lipid vesicles unexpectedly reveal that a small fraction of vesicles rupture in multiple discrete steps when destabilized by a membrane-active peptide which is in contrast to classical solubilization models.

Author(s):  
Christian Mink ◽  
Erik Strandberg ◽  
Parvesh Wadhwani ◽  
Manuel N. Melo ◽  
Johannes Reichert ◽  
...  

BP100 is a short, designer-made membrane-active peptide with multiple functionalities: antimicrobial, cell-penetrating, and fusogenic. Consisting of five lysines and 6 hydrophobic residues, BP100 was shown to bind to lipid bilayers as an amphipathic α-helix, but its mechanism of action remains unclear. With these features, BP100 embodies the characteristics of two distinctly different classes of membrane-active peptides, which have been studied in detail and where the mechanism of action is better understood. On the one hand, its amphiphilic helical structure is similar to the pore forming magainin family of antimicrobial peptides, though BP100 is much too short to span the membrane. On the other hand, its length and high charge density are reminiscent of the HIV-TAT family of cell penetrating peptides, for which inverted micelles have been postulated as translocation intermediates, amongst other mechanisms. Assays were performed to test the antimicrobial and hemolytic activity, the induced leakage and fusion of lipid vesicles, and cell uptake. From these results the functional profiles of BP100, HIV-TAT, and the magainin-like peptides magainin 2, PGLa, MSI-103, and MAP were determined and compared. It is observed that the activity of BP100 resembles most closely the much longer amphipathic α-helical magainin-like peptides, with high antimicrobial activity along with considerable fusogenic and hemolytic effects. In contrast, HIV-TAT shows almost no antimicrobial, fusogenic, or hemolytic effects. We conclude that the amphipathic helix of BP100 has a similar membrane-based activity as magainin-like peptides and may have a similar mechanism of action.


Author(s):  
K. Jacobson ◽  
A. Ishihara ◽  
B. Holifield ◽  
F. Zhang

Our laboratory is concerned with understanding the dynamic structure of the plasma membrane with particular reference to the movement of membrane constituents during cell locomotion. In addition to the standard tools of molecular cell biology, we employ both fluorescence recovery after photo- bleaching (FRAP) and digitized fluorescence microscopy (DFM) to investigate individual cells. FRAP allows the measurement of translational mobility of membrane and cytoplasmic molecules in small regions of single, living cells. DFM is really a new form of light microscopy in that the distribution of individual classes of ions, molecules, and macromolecules can be followed in single, living cells. By employing fluorescent antibodies to defined antigens or fluorescent analogs of cellular constituents as well as ultrasensitive, electronic image detectors and video image averaging to improve signal to noise, fluorescent images of living cells can be acquired over an extended period without significant fading and loss of cell viability.


Author(s):  
Uwe Lücken ◽  
Joachim Jäger

TEM imaging of frozen-hydrated lipid vesicles has been done by several groups Thermotrophic and lyotrophic polymorphism has been reported. By using image processing, computer simulation and tilt experiments, we tried to learn about the influence of freezing-stress and defocus artifacts on the lipid polymorphism and fine structure of the bilayer profile. We show integrated membrane proteins do modulate the bilayer structure and the morphology of the vesicles.Phase transitions of DMPC vesicles were visualized after freezing under equilibrium conditions at different temperatures in a controlled-environment vitrification system. Below the main phase transition temperature of 24°C (Fig. 1), vesicles show a facetted appearance due to the quasicrystalline areas. A gradual increase in temperature leads to melting processes with different morphology in the bilayer profile. Far above the phase transition temperature the bilayer profile is still present. In the band-pass-filtered images (Fig. 2) no significant change in the width of the bilayer profile is visible.


Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Author(s):  
David W. Piston

Two-photon excitation fluorescence microscopy provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging. Two-photon excitation arises from the simultaneous absorption of two photons in a single quantitized event whose probability is proportional to the square of the instantaneous intensity. For example, two red photons can cause the transition to an excited electronic state normally reached by absorption in the ultraviolet. In our fluorescence experiments, the final excited state is the same singlet state that is populated during a conventional fluorescence experiment. Thus, the fluorophore exhibits the same emission properties (e.g. wavelength shifts, environmental sensitivity) used in typical biological microscopy studies. In practice, two-photon excitation is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10−5 maintains the average input power on the order of 10 mW, only slightly greater than the power normally used in confocal microscopy.


Author(s):  
D. Marsh

As a result of vasectomy, spermatozoa are confined to the epididymis and vas deferens, where they degenerate, releasing antigens that enter the circulation or are engulfed by macrophages. Multiple antigens of the sperm can elicit production of autoantibodies; circulating anti-sperm antibodies are found in a large percentage of vasectomized men, indicating the immunogenicity of the sperm. The increased prevalence of macrophages in the liomen of the rhesus monkey testicular efferent ducts after vasectomy led to further study of this region. Frozen sections were used for evaluation of immunopathological status by fluorescence microscopy with fluorescein-conjugated antibody. Subsequent granular deposits of immune complexes were revealed by positive immunofluorescence staining for complement. The immune complex deposition in the basement membrane surrounding the efferent ducts implies that this region is involved in antigen leakage (Fig. 1).


1992 ◽  
Vol 68 (03) ◽  
pp. 297-300 ◽  
Author(s):  
Monica Galli ◽  
Paul Comfurius ◽  
Tiziano Barbui ◽  
Robert F A Zwaal ◽  
Edouard M Bevers

SummaryPlasmas of 16 patients positive for both IgG anticardiolipin (aCL) antibodies and lupus anticoagulant (LA) antibodies were subjected to adsorption with liposomes containing cardiolipin. In 5 of these plasmas both the anticardiolipin and the anticoagulant activities were co-sedimented with the liposomes in a dose-dependent manner, whereas in the remaining cases only the anticardiolipin activity could be removed by the liposomes, leaving the anticoagulant activity (LA) in the supernatant plasma. aCL antibodies purified from the first 5 plasmas were defined as aCL-type A, while the term aCL-type B was used for antibodies in the other 11 plasmas, from which 2 were selected for this study.Prolongation of the dRVVT was produced by affinity-purified aCL-type A antibodies in plasma of human as well as animal (bovine, rat and goat) origin. aCL-type B antibodies were found to be devoid of anticoagulant activity, while the corresponding supernatants containing LA IgG produced prolongation of the dRVVT only in human plasma.These anticoagulant activities of aCL-type A and of LA IgG's were subsequently evaluated in human plasma depleted of β2-glycoprotein I (β2-GPI), a protein which was previously shown to be essential in the binding of aCL antibodies to anionic phospholipids. Prolongation of the dRVVT by aCL-type A antibodies was abolished using β2-GPI deficient plasma, but could be restored upon addition of β2-GPI. In contrast, LA IgG caused prolongation of the dRVVT irrespective of the presence or absence of β2-GPI.Since β2-GPI binds to negatively-charged phospholipids and impedes the conversion of prothrombin by the factor Xa/Va enzyme complex (Nimpf et al., Biochim Biophys Acta 1986; 884: 142–9), comparison was made of the effect of aCL-type A and aCL-type B antibodies on the rate of thrombin formation in the presence and absence of β2-GPI. This was measured in a system containing highly purified coagulation factors Xa, Va and prothrombin and lipid vesicles composed of 20 mole% phosphatidylserine and 80 mole% phosphatidylcholine. No inhibition on the rate of thrombin formation was observed with both types of aCL antibodies when either β2-GPI or the lipid vesicles were omitted. Addition of β2-GPI to the prothrombinase assay in the presence of lipid vesicles causes a time-dependent inhibition which was not affected by the presence of aCL-type B or non-specific IgG. In contrast, the presence of aCL-type A antibodies dramatically increased the anticoagulant effect of β2-GPI. These data indicate that the anticoagulant activity of aCL-type A antibodies in plasma is mediated by β2-GPI.


Sign in / Sign up

Export Citation Format

Share Document