The hydrogen bond strength of the phenol–phenolate anionic complex: a computational and photoelectron spectroscopic study

2015 ◽  
Vol 17 (38) ◽  
pp. 25109-25113 ◽  
Author(s):  
Allyson M. Buytendyk ◽  
Jacob D. Graham ◽  
Kim D. Collins ◽  
Kit H. Bowen ◽  
Chia-Hua Wu ◽  
...  

The phenol–phenolate anionic complex was studied in vacuo by negative ion photoelectron spectroscopy using 193 nm photons and by density functional theory (DFT) computations at the ωB97XD/6-311+G(2d,p) level.

2020 ◽  
Vol 18 (1) ◽  
pp. 357-368
Author(s):  
Kaiwen Zheng ◽  
Kai Guo ◽  
Jing Xu ◽  
Wei Liu ◽  
Junlang Chen ◽  
...  

AbstractCatechin – a natural polyphenol substance – has excellent antioxidant properties for the treatment of diseases, especially for cholesterol lowering. Catechin can reduce cholesterol content in micelles by forming insoluble precipitation with cholesterol, thereby reducing the absorption of cholesterol in the intestine. In this study, to better understand the molecular mechanism of catechin and cholesterol, we studied the interaction between typical catechins and cholesterol by the density functional theory. Results show that the adsorption energies between the four catechins and cholesterol are obviously stronger than that of cholesterol themselves, indicating that catechin has an advantage in reducing cholesterol micelle formation. Moreover, it is found that the molecular interactions of the complexes are mainly due to charge transfer of the aromatic rings of the catechins as well as the hydrogen bond interactions. Unlike the intuitive understanding of a complex formed by hydrogen bond interaction, which is positively correlated with the number of hydrogen bonds, the most stable complexes (epicatechin–cholesterol or epigallocatechin–cholesterol) have only one but stronger hydrogen bond, due to charge transfer of the aromatic rings of catechins.


2012 ◽  
Vol 137 (20) ◽  
pp. 205101 ◽  
Author(s):  
Yeon Jae Ko ◽  
Piotr Storoniak ◽  
Haopeng Wang ◽  
Kit H. Bowen ◽  
Janusz Rak

2021 ◽  
Author(s):  
Ian Murphy ◽  
Peter Rice ◽  
Madison Monahan ◽  
Leo Zasada ◽  
Elisa Miller ◽  
...  

Covalent functionalization of Ni2P nanocrystals was demonstrated using aryl-diazonium salts. Spontaneous adsorption of aryl functional groups was observed, with surface coverages ranging from 20-96% depending on the native reactivity of the salt as determined by the aryl substitution pattern. Increased coverage was possible for low reactivity species using a sacrificial reductant. Functionalization was confirmed using thermogravimetric analysis, FTIR and X-ray photoelectron spectroscopy. The structure and energetics of this nanocrystal electrocatalyst system, as a function of ligand coverage, was explored with density functional theory calculations. The Hammett parameter of the surface functional group was found to linearly correlate with the change in Ni and P core-electron binding energies and the nanocrystal’s experimentally and computationally determined work-function. The electrocatalytic activity and stability of the functionalized nanocrystals for hydrogen evolution were also improved when compared to the unfunctionalized material, but a simple trend based on electrostatics was not evident. We used density functional theory to understand this discrepancy and found that H adsorption energies on the covalently functionalized Ni2P also do not follow the electrostatic trend and are predictive descriptors of the experimental results.


Sign in / Sign up

Export Citation Format

Share Document