Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage

2015 ◽  
Vol 44 (15) ◽  
pp. 5181-5199 ◽  
Author(s):  
Yi-Zhou Zhang ◽  
Yang Wang ◽  
Tao Cheng ◽  
Wen-Yong Lai ◽  
Huan Pang ◽  
...  

This review introduces the background, design and applications of paper-based supercapacitors, highlighting their importance for low-cost flexible energy storage.

Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


2021 ◽  
Vol 9 (13) ◽  
pp. 8099-8128
Author(s):  
Xinyu Zhang ◽  
Changzhong Jiang ◽  
Jing Liang ◽  
Wei Wu

Efficient strategies of electrode materials and the device architecture for wearable flexible supercapacitors have been systematically summarized.


2021 ◽  
Author(s):  
Mervette El Batouti ◽  
H. A. Fetouh

New ferroelectric perovskite sample: excellent dielectric, negligible dielectric loss for energy storage systems such as solar cells, solar ponds, and thermal collectors has been prepared at low cost using nanotechnology.


Author(s):  
peisheng guo ◽  
gongzheng yang ◽  
Chengxin Wang

Aqueous zinc-ion batteries (AZIBs) have been regarded as alternative and promising large-scale energy storage systems due to their low cost, convenient manufacturing processes, and high safety. However, their development was...


Author(s):  
Mohan Kumar Anand Raj ◽  
Rajasekar Rathanasamy ◽  
Prabhakaran Paramasivam ◽  
Santhosh Sivaraj

2014 ◽  
Vol 04 (02) ◽  
pp. 1450009 ◽  
Author(s):  
Mojtaba Rahimabady ◽  
Li Lu ◽  
Kui Yao

Multilayer dielectric capacitors were fabricated from nanocomposite precursor comprised of BaTiO 3@ TiO 2 core–shell nanosized particles and poly(vinylidene fluoride–hexafluoropropylene) (P(VDF–HFP)) polymer matrix (20 vol%). The multilayer capacitors showed very high discharge speed and high discharged energy density of around 2.5 J/cm3 at its breakdown field (~ 166 MV/m). The energy density of the nanocomposite multilayer capacitors was substantially higher than the energy density of commercially used power capacitors. Low cost, flexible structure, high discharge rate and energy density suggest that the nanocomposite multilayer capacitors are promising for energy storage applications in many power devices and systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Zhou ◽  
Peifang Wang ◽  
Hao Li ◽  
Bin Hu ◽  
Yan Sun ◽  
...  

AbstractOxygen evolution reaction (OER) plays a determining role in electrochemical energy conversion devices, but challenges remain due to the lack of effective low-cost electrocatalysts and insufficient understanding about sluggish reaction kinetics. Distinguish from complex nano-structuring, this work focuses on the spin-related charge transfer and orbital interaction between catalysts and intermediates to accelerate catalytic reaction kinetics. Herein, we propose a simple magnetic-stimulation approach to rearrange spin electron occupation in noble-metal-free metal-organic frameworks (MOFs) with a feature of thermal-differentiated superlattice, in which the localized magnetic heating in periodic spatial distribution makes the spin flip occur at particular active sites, demonstrating a spin-dependent reaction pathway. As a result, the spin-rearranged Co0.8Mn0.2 MOF displays mass activities of 3514.7 A gmetal−1 with an overpotential of ~0.27 V, which is 21.1 times that of pristine MOF. Our findings provide a new paradigm for designing spin electrocatalysis and steering reaction kinetics.


Sign in / Sign up

Export Citation Format

Share Document