scholarly journals Spin-sate reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Zhou ◽  
Peifang Wang ◽  
Hao Li ◽  
Bin Hu ◽  
Yan Sun ◽  
...  

AbstractOxygen evolution reaction (OER) plays a determining role in electrochemical energy conversion devices, but challenges remain due to the lack of effective low-cost electrocatalysts and insufficient understanding about sluggish reaction kinetics. Distinguish from complex nano-structuring, this work focuses on the spin-related charge transfer and orbital interaction between catalysts and intermediates to accelerate catalytic reaction kinetics. Herein, we propose a simple magnetic-stimulation approach to rearrange spin electron occupation in noble-metal-free metal-organic frameworks (MOFs) with a feature of thermal-differentiated superlattice, in which the localized magnetic heating in periodic spatial distribution makes the spin flip occur at particular active sites, demonstrating a spin-dependent reaction pathway. As a result, the spin-rearranged Co0.8Mn0.2 MOF displays mass activities of 3514.7 A gmetal−1 with an overpotential of ~0.27 V, which is 21.1 times that of pristine MOF. Our findings provide a new paradigm for designing spin electrocatalysis and steering reaction kinetics.

2019 ◽  
Vol 7 (9) ◽  
pp. 4950-4959 ◽  
Author(s):  
Wenxia Chen ◽  
Yiwei Zhang ◽  
Rong Huang ◽  
Yuming Zhou ◽  
Yangjin Wu ◽  
...  

Development of highly efficient and low-cost electrocatalysts for the oxygen evolution reaction (OER) with high electrical conductivity and chemical stability is critical for various energy conversion devices and systems, yet still remains a formidable challenge.


2021 ◽  
Author(s):  
Ning Liu ◽  
Qiaoqiao Zhang ◽  
Jingqi Guan

Seeking for low-cost and high-performance electrocatalysts for oxygen evolution reaction (OER) has drawn enormous research interest in the last few years. Reported herein is the topotactic construction of a binuclear...


2021 ◽  
Author(s):  
Song-Jeng Isaac Huang ◽  
Adil Muneeb ◽  
Sabhapathy Palani ◽  
Anjaiah Sheelam ◽  
Bayikadi Khasimsaheb ◽  
...  

Developing a non-precious metal electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is desirable for low-cost energy conversion devices. Herein, we designed and developed a new class...


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaili Zhang ◽  
Xinhui Xia ◽  
Shengjue Deng ◽  
Yu Zhong ◽  
Dong Xie ◽  
...  

Abstract Controllable synthesis of highly active micro/nanostructured metal electrocatalysts for oxygen evolution reaction (OER) is a particularly significant and challenging target. Herein, we report a 3D porous sponge-like Ni material, prepared by a facile hydrothermal method and consisting of cross-linked micro/nanofibers, as an integrated binder-free OER electrocatalyst. To further enhance the electrocatalytic performance, an N-doping strategy is applied to obtain N-doped sponge Ni (N-SN) for the first time, via NH3 annealing. Due to the combination of the unique conductive sponge structure and N doping, the as-obtained N-SN material shows improved conductivity and a higher number of active sites, resulting in enhanced OER performance and excellent stability. Remarkably, N-SN exhibits a low overpotential of 365 mV at 100 mA cm−2 and an extremely small Tafel slope of 33 mV dec−1, as well as superior long-term stability, outperforming unmodified sponge Ni. Importantly, the combination of X-ray photoelectron spectroscopy and near-edge X-ray adsorption fine structure analyses shows that γ-NiOOH is the surface-active phase for OER. Therefore, the combination of conductive sponge structure and N-doping modification opens a new avenue for fabricating new types of high-performance electrodes with application in electrochemical energy conversion devices.


2017 ◽  
Vol 53 (59) ◽  
pp. 8372-8375 ◽  
Author(s):  
Manman Wang ◽  
Mengting Lin ◽  
Jiantao Li ◽  
Lei Huang ◽  
Zechao Zhuang ◽  
...  

Metal–organic framework derived carbon-confined Ni2P nanocrystals supported on graphene with high effective surface area, more exposed active sites, and enhanced charge transport were successfully designed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3010
Author(s):  
Sergio Battiato ◽  
Mario Urso ◽  
Salvatore Cosentino ◽  
Anna Lucia Pellegrino ◽  
Salvo Mirabella ◽  
...  

The low efficiency of water electrolysis mostly arises from the thermodynamic uphill oxygen evolution reaction. The efficiency can be greatly improved by rationally designing low-cost and efficient oxygen evolution anode materials. Herein, we report the synthesis of Ni–P alloys adopting a facile electroless plating method under mild conditions on nickel substrates. The relationship between the Ni–P properties and catalytic activity allowed us to define the best conditions for the electroless synthesis of highperformance Ni–P catalysts. Indeed, the electrochemical investigations indicated an increased catalytic response by reducing the thickness and Ni/P ratio in the alloy. Furthermore, the Ni–P catalysts with optimized size and composition deposited on Ni foam exposed more active sites for the oxygen evolution reaction, yielding a current density of 10 mA cm−2 at an overpotential as low as 335 mV, exhibiting charge transfer resistances of only a few ohms and a remarkable turnover frequency (TOF) value of 0.62 s−1 at 350 mV. The present study provides an advancement in the control of the electroless synthetic approach for the design and large-scale application of high-performance metal phosphide catalysts for electrochemical water splitting.


Author(s):  
Yi-Wen Yang ◽  
Bing-Ye Song

Abstract Developing an efficient, green and low-cost non noble metal catalyst towards oxygen evolution reaction (OER) has been urgent for new generation of sustainable energy technologies. Herein, the Co/Ni metal-organic frameworks (MOFs) derived metal phosphides/ carbon matrix composites are successfully produced by the precipitation-carbonization-phosphorization processes. The obtained samples are characterized and analyzed for structural and morphological investigation. Electrochemical tests for OER are performed in alkaline medium. The positive effects of P, Ni doping in MOFs on the structure and properties of composites have been analyzed. Benefitting from the unique structure of three-dimensional flower-like polyhedron with rich structure and higher porosity, the NiCo-P/NC catalyst exhibits the lowest overpotential of 0.32 V compared with the commercial IrO2 (0.34V) at 10 mA cm−2, as well as outstanding stability and kinetic mechanism. Besides, the cost of the proposed novel material is calculated to be 4.337 US$/g, which is only 1.57 % of that of commercial IrO2 (276 US$/g). The results obtained from the MOF-derived low-cost and high-efficiency OER catalyst would provide a new perspective on application of electrochemical storage and batteries.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 828 ◽  
Author(s):  
Jitao Lu ◽  
Yue Zeng ◽  
Xiaoxue Ma ◽  
Huiqin Wang ◽  
Linna Gao ◽  
...  

Cystosepiment-like cobalt nanoparticles@N-doped carbon composite named Co-NPs@NC with highly efficient electrocatalytic performance for oxygen evolution reaction was prepared from carbonization of N-doped Co-MOFs. The optimized Co-NPs@NC-600 shows overpotentials of 315 mV to afford a current density of 10 mA·cm−2. Meanwhile, the electrocatalys presents excellent long-term durability. The outstanding electrocatalytic performance can be attributed to the unique cystosepiment-like architecture with high specific surface area (214 m2/g), high conductivity of N-doped carbon and well-distributed active sites.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Qibing Dong ◽  
Chao Shuai ◽  
Zunli Mo ◽  
Ruibin Guo ◽  
Nijuan Liu ◽  
...  

A Ni-based metal organic framework (Ni-BDC) and subsequently derived NiFe-LDH were studied to overcome the defect of the low availability of active sites for the oxygen evolution reaction (OER) during the water splitting process.


Sign in / Sign up

Export Citation Format

Share Document