Waterborne polyurethanes from CO2 based polyols with comprehensive hydrolysis/oxidation resistance

2016 ◽  
Vol 18 (2) ◽  
pp. 524-530 ◽  
Author(s):  
Jin Wang ◽  
Hongming Zhang ◽  
Yuyang Miao ◽  
Lijun Qiao ◽  
Xianhong Wang ◽  
...  

Water-borne CO2-based polyurethanes with excellent mechanical performance and hydrolysis/oxidation resistance are prepared from CO2.

2012 ◽  
Vol 619 ◽  
pp. 545-552
Author(s):  
Bei Ding ◽  
Xia Zhang ◽  
Dong Liang Zhou ◽  
Chan Wen Miao

A novel kind of block polymer with characteristics of rod-like chain conformations-water-borne polyurethane (PUA) was synthesized by incorporate polyacrylate (PA) into the PU chain to prepare an aqueous polyurethane-polyacrylate (PUA) hybrid emulsion with core-shell structure. The interactions between Water-borne PUA and C-S-H nanostructure, which include intercalation and the polymerization degree of C-S-H silicate chains, were studied by small angle X-ray diffraction spectra and 29Si NMR spectra, respectly. The influences of water-borne PUA on mechanical performance of C-S-H were investigated experimentally. The small XRD results show that no evidence is observed for any fundamental size change in the C-S-H particles that have been formed in the presence of polymer. The NMR results indicate that there is a significant increase in the Q2/Q1 ratio ranging from 0.5 for pure C-S-H to 2.2 for PUA-C-S-H, respectively. The degree of silicate polymerization increases from 3.0 for pure C-S-H to 6.4 for PUA-C-S-H by calculation. PUA had minimal harmful effect on the compressive strength whereas the flexural strength was increased by 23.2% with dosage of 0.5% and 23.3% with dosage of 1.0%, respectively.The fracture energy ratios of concrete with a dosage of PUA less than 1% are greatly improved more than double with the decreasing of concrete strength less than 10%. The water-borne PUA also enhances the impact resistance of concrete. The impact energy consumption of samples with PUA increase nearly three times more than reference samples, also better than samples with PP fiber.


2021 ◽  
pp. 153486
Author(s):  
Kun Yang ◽  
Erofili Kardoulaki ◽  
Dong Zhao ◽  
Bowen Gong ◽  
Andre Broussard ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 754 ◽  
Author(s):  
Liu ◽  
Xia ◽  
Zehri ◽  
Ye ◽  
Wang ◽  
...  

Graphene, the typical two-dimensional sp2 hybridized carbon allotrope, is widely used as a filler for improving the mechanical performance of polymers. However, its superhydrophobic surface makes it a big challenge to obtain stable graphene dispersions, especially in water-borne systems. On the contrary, graphene oxide (GO) shows excellent dispersibility in water, but strong oxidants and acids destroy its structure and degrade its mechanical properties. This largely limits its application in water-borne coatings. In this work, graphene from mechanical exfoliation was surface modified by p-aminophenol derived diazonium salt to achieve a homogenous dispersion. Moreover, the hydroxyl groups in p-aminophenol are able to combine with epoxy resins during the curing process to improve mechanical performance of the final coatings. The result shows that functionalized graphene shows a lower coefficient of friction and better abrasion resistance compared to GO.


1998 ◽  
Vol 255 (1-2) ◽  
pp. 133-138 ◽  
Author(s):  
Zhaolin Tang ◽  
Fuhui Wang ◽  
Weitao Wu ◽  
Qingjiang Wang ◽  
Dong Li

2021 ◽  
Vol 11 (11) ◽  
pp. 4784
Author(s):  
Ying Li ◽  
Sichong Chen ◽  
Jun Shen ◽  
Siqi Zhang ◽  
Ming Liu ◽  
...  

Biobased cationic waterborne polyurethanes (WPUs) were prepared using isophorone diisocyanate (IPDI), N-methyl diethanolamine (N-MDEA), polycaprolactone (PCL) diol, hydrochlotic acid (HCl), and 1,4-butanediol (BDO). To improve the mechanical performance and adhesive strength of the waterborne polyurethane films, different amounts of castor oil (CO) acting as a cross-linking agent were incorporated in the polyurethane structure. The structures of the waterborne polyurethanes were assessed by Fourier-transform infrared spectroscopy (FTIR). The combination of CO had a positive effect on the dispersion and stability properties of WPUs. WPUs containing higher content of CO demonstrated a remarkable enhancement in homogeneity among particles. The stable aqueous dispersion was obtained even when N-MDEA loading was as low as 3.2 wt%; a bonus of this low hydrophilic moiety was the excellent adhesive strength, whose T-peel strength could reach up to 36.8 N/25 mm, about 114% higher than that of WPU (17.2 N/25 mm) without any CO content. The elongation at break of CO7.40%-WPU was 391%. In addition, the fracture mechanism of the waterborne polyurethane films transformed from the brittle failure to the ductile fracture. The experiment results showed the CO-modified WPUs displayed excellent film-forming property, flexibility, and adhesion, which can be employed for constructing the eco-friendly, biodegradable, cationic, waterborne polyurethanes.


2012 ◽  
Vol 238 ◽  
pp. 109-117
Author(s):  
Bei Ding ◽  
Xia Zhang ◽  
Dong Ling Zhou ◽  
Chan Wen Miao

A novel kind of block polymer with characteristics of rod-like chain conformations, water-borne polyurethane (PUA), was synthesized by incorporate polyacrylate (PA) into the PU chain to prepare an aqueous polyurethane-polyacrylate (PUA) hybrid emulsion with core-shell structure. The influence of water-borne PUA on workability and mechanical performance of concrete were investigated experimentally. PUA had minimal harmful effect on the compressive strength whereas the flexural strength was increased by 23.2% with dosage of 0.5% and 23.3% with dosage of 1.0%, respectively. The fracture energy ratios of concrete with a dosage of PUA less than 1% are greatly improved more than double with the decreasing of concrete strength less than 10%. The water-borne PUA also enhances the early plastic cracking resistance and the impact resistance of concrete. The impact energy consumption of samples with PUA increase nearly three times more than reference samples, also better than samples with PP fiber. And PUA can refine the crack from 2-4mm to 0.2-0.5mm of the main distribution, decreasing total area of crack greatly.


Sign in / Sign up

Export Citation Format

Share Document