Characterization of malic enzyme and the regulation of its activity and metabolic engineering on lipid production

RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 45558-45570 ◽  
Author(s):  
Ying-Jie Liang ◽  
Jian-Guo Jiang

Nowadays, microbial lipids are employed as the feedstock for biodiesel production, which has attracted great attention across the whole world.

RSC Advances ◽  
2016 ◽  
Vol 6 (32) ◽  
pp. 26752-26756 ◽  
Author(s):  
Xibin Zhang ◽  
Hongwei Shen ◽  
Xiaobing Yang ◽  
Qian Wang ◽  
Xue Yu ◽  
...  

Laminaria residues, major wastes from the kelp industry, can be effectively converted by oleaginous yeasts into microbial lipids as potential feedstock for biodiesel production.


2021 ◽  
Vol 170 ◽  
pp. 302-314
Author(s):  
Adeyinka S. Yusuff ◽  
Aman K. Bhonsle ◽  
Jayati Trivedi ◽  
Dinesh P. Bangwal ◽  
Lok P. Singh ◽  
...  

2021 ◽  
Vol 54 ◽  
pp. 102218
Author(s):  
Seungjib Jeon ◽  
Hyun Gi Koh ◽  
Jun Muk Cho ◽  
Nam Kyu Kang ◽  
Yong Keun Chang

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 427 ◽  
Author(s):  
Muhammad Awais ◽  
Sa’ed A Musmar ◽  
Faryal Kabir ◽  
Iram Batool ◽  
Muhammad Asif Rasheed ◽  
...  

Biodiesel is a renewable fuel usually produced from vegetable oils and animal fats. This study investigates the extraction of oil and its conversion into biodiesel by base-catalyzed transesterification. Firstly, the effect of various solvents (methanol, n-hexane, chloroform, di-ethyl ether) on extraction of oil from non-edible crops, such as R. communis and M. azedarach, were examined. It was observed that a higher concentration of oil was obtained from R. communis (43.6%) as compared to M. azedarach (35.6%) by using methanol and n-hexane, respectively. The extracted oils were subjected to NaOH (1%) catalyzed transesterification by analyzing the effect of oil/methanol molar ratio (1:4, 1:6, 1:8 and 1:10) and varying temperature (20, 40, 60 and 80 °C) for 2.5 h of reaction time. M. azedarach yielded 88% and R. communis yielded 93% biodiesel in 1:6 and 1:8 molar concentrations at ambient temperature whereas, 60 °C was selected as an optimum temperature, giving 90% (M. azedarach) and 94% (R. communis) biodiesel. The extracted oil and biodiesel were characterized for various parameters and most of the properties fulfilled the American Society for Testing and Materials (ASTM) standard biodiesel. The further characterization of fatty acids was done by Gas Chromatography/Mass Spectrometer (GC/MS) and oleic acid was found to be dominant in M. azedarach (61.5%) and R. communis contained ricinoleic acid (75.53%). Furthermore, the functional groups were analyzed by Fourier Transform Infrared Spectroscopy. The results suggested that both of the oils are easily available and can be used for commercial biodiesel production at a cost-effective scale.


2013 ◽  
Vol 845 ◽  
pp. 457-461
Author(s):  
Ramli Mat ◽  
Junaidah Buhari ◽  
Mahadhir Mohamed ◽  
Anwar Johari ◽  
Tuan Amran Tuan Abdullah ◽  
...  

Glycerol is the main by-product of biodiesel production and during the trans-esterification reaction, about 10 wt % of glycerol is produced. In this study, different amount of Ni was loaded on HZSM-5 and tested for the conversion of glycerol to hydrogen. The studies were also conducted at different reactor temperature of 450, 500, 550, 600 and 650°C respectively. The structural characterization of the catalyst was carried out using the XRD. It was found that, the addition of 15 wt % of nickel loaded on HZSM-5 shows the highest glycerol conversion of 98.54%. In addition, it produces the highest yield of hydrogen gas operated at reactor temperature of 600°C.


2018 ◽  
Vol 267 ◽  
pp. 466-472 ◽  
Author(s):  
Yimeng Lin ◽  
Jingping Ge ◽  
Hongzhi Ling ◽  
Yunye Zhang ◽  
Xiufeng Yan ◽  
...  

2015 ◽  
Vol 74 ◽  
pp. 774-781 ◽  
Author(s):  
Ritu Tripathi ◽  
Jyoti Singh ◽  
Indu Shekhar Thakur
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document