Nickel clusters grown on three-dimensional graphene oxide–multi-wall carbon nanotubes as an electrochemical sensing platform for luteolin at the picomolar level

RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 64739-64748 ◽  
Author(s):  
Taotao Yang ◽  
Yansha Gao ◽  
Jingkun Xu ◽  
Limin Lu ◽  
Yuanyuan Yao ◽  
...  

This study focuses on enhancing the catalytic activity of metallic Ni by using 1D MWCNTs, 2D GO and GR, and 3D GO–MWCNTs as supporting matrixs for the fabrication of electrochemical sensor for detecting the flavonoid luteolin.

2021 ◽  
Author(s):  
Liang Wei ◽  
Xinlong Huang ◽  
Xianqian Zhang ◽  
Xiande Yang ◽  
Jing Yang ◽  
...  

A selective and sensitive electrochemical sensor based on three-dimensional hierarchically porous carbon was developed for simultaneous determination of dihydroxybenzene isomers.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42212-42220
Author(s):  
Manh B. Nguyen ◽  
Vu Thi Hong Nhung ◽  
Vu Thi Thu ◽  
Dau Thi Ngoc Nga ◽  
Thuan Nguyen Pham Truong ◽  
...  

In the present work, we reported the fabrication of a novel electrochemical sensing platform to detect 2,4-dichlorophenol (2,4-DCP) by using a copper benzene-1,3,5-tricarboxylate–graphene oxide (Cu–BTC/GO) composite.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1743
Author(s):  
Qianhui Gu ◽  
Chaoqun Lu ◽  
Kangwen Chen ◽  
Xingguang Chen ◽  
Pengfei Ma ◽  
...  

The rapid quantification of capsaicinoids content is very important for the standardization of pungent taste degree and flavor control of soy sauce and pot-roast meat products. To rapidly quantify the capsaicinoids content in soy sauce and pot-roast meat products, an electrochemical sensor based on β-cyclodextrin/carboxylated multi-wall carbon nanotubes was constructed and the adsorptive stripping voltammetry method was used to enrich samples in this study. The results showed that the excellent performance of the established electrochemical sensor was mostly because β-cyclodextrin caused the relative dispersion of carboxylated multi-wall carbon nanotubes on the glassy carbon electrode surface. Capsaicin and dihydrocapsaicin had similar electrochemical behavior, so the proposed method could determine the total content of capsaicinoids. The linearity of capsaicinoids content was from 0.5 to 100 μmol/L and the detection limit was 0.27 μmol/L. The recovery rates of different capsaicinoids content were between 83.20% and 136.26%, indicating the proposed sensor could realize trace detection of capsaicinoids content in sauce and pot-roast meat products. This work provides a research basis for pungent taste degree standardization and flavor control in the food industry.


2022 ◽  
Vol 23 ◽  
pp. 100644
Author(s):  
Hao-Lin Hsu ◽  
Wei-Cheng Chiu ◽  
Chih-Chiang Yang ◽  
Lung-Chuan Chen ◽  
Chun-Liang Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document