Developing acetylcholinesterase-based inhibition assay by modulated synthesis of silver nanoparticles: applications for sensing of organophosphorus pesticides

RSC Advances ◽  
2015 ◽  
Vol 5 (76) ◽  
pp. 61998-62006 ◽  
Author(s):  
D. Nanda Kumar ◽  
A. Rajeshwari ◽  
S. A. Alex ◽  
M. Sahu ◽  
A. M. Raichur ◽  
...  

A novel and highly sensitive probe for the detection of organophosphorus compounds (OPs) using acetylcholinesterase (AChE) and acetylthiocholine (ATCh) during the modulated synthesis of silver nanoparticles.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 714
Author(s):  
Gaber A. M. Mersal ◽  
Hamdy S. El-Sheshtawy ◽  
Mohammed A. Amin ◽  
Nasser Y. Mostafa ◽  
Amine Mezni ◽  
...  

The agricultural use of organophosphorus pesticides is a widespread practice with significant advantages in crop health and product yield. An undesirable consequence is the contamination of soil and groundwater by these neurotoxins resulting from over application and run-off. Here, we design and synthesize the mononuclear zinc(II) complexes, namely, [Zn(AMB)2Cl](ClO4) 1 and [Zn(AMB)2(OH)](ClO4) 2 (AMB = 2-aminomethylbenzimidazole), as artificial catalysts inspired by phosphotriesterase (PTE) for the hydrolysis of organophosphorus compounds (OPs) and simultaneously detect the organophosphate pesticides such as fenitrothion and parathion. Spectral and DFT (B3LYP/Lanl2DZ) calculations revealed that complexes 1 and 2 have a square-pyramidal environment around zinc(II) centers with coordination chromophores of ZnN4Cl and ZnN4O, respectively. Both 1 and 2 were used as a modifier in the construction of a biomimetic sensor for the determination of toxic OPs, fenitrothion and parathion, in phosphate buffer by square wave voltammetry. The hydrolysis of OPs using 1 or 2 generates p-nitrophenol, which is subsequently oxidized at the surface of the modified carbon past electrode. The catalytic activity of 2 was higher than 1, which is attributed to the higher electronegativity of the former. The oxidation peak potentials of p-nitrophenol were obtained at +0.97 V (vs. Ag/AgCl) using cyclic voltammetry (CV) and +0.88 V (vs. Ag/AgCl) using square wave voltammetry. Several parameters were investigated to evaluate the performance of the biomimetic sensor obtained after the incorporation of zinc(II) complex 1 and 2 on a carbon paste electrode (CPE). The calibration curve showed a linear response ranging between 1.0 μM (0.29 ppm) and 5.5 μM (1.6 ppm) for fenitrothion and 1.0 μM (0.28 ppm) and 0.1 μM (0.028 ppm) for parathion with a limit of detection (LOD) of 0.08 μM (0.022 ppm) and 0.51 μM (0.149 ppm) for fenitrothion and parathion, respectively. The obtained results clearly demonstrated that the CPE modified by 1 and 2 has a remarkable electrocatalytic activity towards the hydrolysis of OPs under optimal conditions.


Author(s):  
Chengpeng Zhang ◽  
Shuai Chen ◽  
Zhaoliang Jiang ◽  
Zhenyu Shi ◽  
Jilai Wang ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 20390-20395 ◽  
Author(s):  
Gadupudi Purna Chandra Rao ◽  
Vairaperumal Tharmaraj ◽  
Jyisy Yang

Fabrication of highly sensitive substrates for SEIRA measurements via assistance of surfactant to electrolessly deposit silver nanoparticles on Ge crystal.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 384 ◽  
Author(s):  
Zhiliang Zhang ◽  
Tiantian Si ◽  
Jun Liu ◽  
Guowei Zhou

The rapid sampling and efficient collection of target molecules from a real-world surface is fairly crucial for surface-enhanced Raman scattering (SERS) to detect trace pesticide residues in the environment and in agriculture fields. In this work, a versatile approach was exploited to fabricate a flexible SERS substrate for highly sensitive detection of carbaryl pesticides, using in-situ grown silver nanoparticles (AgNPs)on non-woven (NW) fabric surfaces based on mussel-inspired polydopamine (PDA) molecules. The obtained NW@PDA@AgNPs fabrics showed extremely sensitive and reproducible SERS signals toward crystal violet (CV) molecules, and the detection limit was as low as 1.0 × 10−12 M. More importantly, these NW@PDA@AgNPs fabrics could be directly utilized as flexible SERS substrates for the rapid extraction and detection of trace carbaryl pesticides from various fruit surfaces through a simple swabbing approach. It was identified that the detection limits of carbaryl residues from apple, orange, and banana surfaces were approximately decreased to 4.02 × 10−12, 6.04 × 10−12, and 5.03 × 10−12 g, respectively, demonstrating high sensitivity and superior reliability. These flexible substrates could not only drastically increase the collection efficiency from multifarious irregular-shaped matrices, but also greatly enhance analytical sensitivity and reliability for carbaryl pesticides. The fabricated flexible and multifunctional SERS substrates would have great potential to trace pesticide residue detection in the environment and bioscience fields.


Sign in / Sign up

Export Citation Format

Share Document