scholarly journals Non-aqueous template-assisted synthesis of mesoporous nanocrystalline silicon orthophosphate

RSC Advances ◽  
2015 ◽  
Vol 5 (90) ◽  
pp. 73670-73676 ◽  
Author(s):  
Ales Styskalik ◽  
David Skoda ◽  
Zdenek Moravec ◽  
Pavla Roupcova ◽  
Craig E. Barnes ◽  
...  

Mesoporous nanocrystalline silicon orthophosphate Si5P6O25 was synthesized by the non-hydrolytic sol–gel reaction in the presence of Pluronic P123 template and displays superior catalytic activity and selectivity in methylstyrene dimerization.

Author(s):  
Mohsen Nikoorazm ◽  
Maryam Khanmoradi ◽  
Masoumeh Sayadian

Introduction:: MCM-41 was synthesized using the sol-gel method. Then two new transition metal complexes of Nickel (II) and Vanadium (IV), were synthesized by immobilization of adenine (6-aminopurine) into MCM-41 mesoporous. The compounds have been characterized by XRD, TGA, SEM, AAS and FT-IR spectral studies. Using these catalysts provided an efficient and enantioselective procedure for oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using hydrogen peroxide at room temperature. Materials and Methods:: To a solution of sulfide or thiol (1 mmol) and H2O2 (5 mmol), a determined amount of the catalyst was added. The reaction mixture was stirred at room temperature for the specific time under solvent free conditions. The progress of the reaction was monitored by TLC using n-hexane: acetone (8:2). Afterwards, the catalyst was removed from the reaction mixture by centrifugation and, then, washed with dichloromethane in order to give the pure products. Results:: All the products were obtained in excellent yields and short reaction times indicating the high activity of the synthesized catalysts. Besides, the catalysts can be recovered and reused for several runs without significant loss in their catalytic activity. Conclusion:: These catalytic systems furnish the products very quickly with excellent yields and VO-6AP-MCM-41 shows high catalytic activity compared to Ni-6AP-MCM-41.


2021 ◽  
Author(s):  
Kadriye Özlem Hamaloğlu ◽  
Rukiye Babacan Tosun ◽  
Serap Ulu ◽  
Hakan Kayi ◽  
Cengiz Kavaklı ◽  
...  

A synergistic catalyst in the form of monodisperse-porous CeO2 microspheres supported Pd nanoparticles (Pd NPs) was synthesized. CeO2 microspheres 4 μm in size were obtained by a newly developed “sol-gel...


2010 ◽  
Vol 10 (7) ◽  
pp. 4273-4278 ◽  
Author(s):  
U. Lafont ◽  
S. Waichman ◽  
M. Valvo ◽  
E. M. Kelder

2011 ◽  
Vol 110-116 ◽  
pp. 3795-3800 ◽  
Author(s):  
Xiao Zhi Wang ◽  
Wei Wei Yong ◽  
Wei Qin Yin ◽  
Ke Feng ◽  
Rong Guo

Expanded perlite (EP) modified titanium dioxide (TiO2) with different loading times were prepared by Sol-Gel method. Photocatalytic degradation kinetics of Rhodamine B (RhB) in polluted water by the materials (EP-nanoTiO2), as well as the effects of different loading times and the initial concentration of RhB on photocatalysis rate were examined. The catalytic activity of the regenerated photocatalyst was also tested. The results showed that photocatalyst modified three times with TiO2had the highest catalytic activity. Degradation ratio of RhB by EP-nanoTiO2(modified three times) under irradiation for 6 h were 98.0%, 75.6% and 63.2% for 10 mg/L, 20 mg/L and 30 mg/L, respectively.The photocatalyst activity has little change after the five times recycling, and the degradation rate of RhB decreased less than 8%. The reaction of photocatalysis for RhB with irradiation time can be expressed as first-order kinetic mode within the initial concentration range of RhB between 10mg/L and 30 mg/L. EP-nanoTiO2photocatalyst has a higher activity and stability to degrade RhB in aqueous solution.


2011 ◽  
Vol 89 (8) ◽  
pp. 939-947 ◽  
Author(s):  
Irena Mihailova ◽  
Dimitar Mehandjiev

Two calcium–cobalt silicates were synthesized in which cobalt occupies different structural positions. The crystal phases belong to two main structural silicate types. In the Co-åkermanite structure (Ca2CoSi2O7), cobalt cations take tetrahedral coordination toward oxygen atoms. In the Co-pyroxene structure of CaCoSi2O6, cobalt displays octahedral coordination. Ca2CoSi2O7 was prepared by solid-phase synthesis and CaCoSi2O6 was prepared by sol–gel method. The synthesis of the phases was confirmed by XRD, FTIR, and EPR data. On the basis of the XPS analysis, it can be concluded that Co2+ cations exist in the studied silicates. Thus, it is possible to study the catalytic activity of two silicate phases containing Co2+ cations in different coordinations: tetrahedral and octahedral. It was found that cobalt silicates with crystal structures corresponding to pyroxene and åkermanite possess catalytic activity in the reactions of complete oxidation of CO and toluene. Co-pyroxene exhibits higher catalytic activity than Co-åkermanite, but the higher cobalt content on the surface of Co-pyroxene should also be taken into account. Then, it turns out that catalytically active complexes with Со2+ ions in tetrahedral coordination are more efficient than those with such ions in octahedral coordination when equal concentrations of cobalt were used on the surface of the catalysts.


2005 ◽  
Vol 351 (46-48) ◽  
pp. 3624-3629 ◽  
Author(s):  
Mariza Alves Figueiredo ◽  
André Luiz de Faria ◽  
Marilda das Dores Assis ◽  
Herenilton Paulino Oliveira

Author(s):  
Tran Thi Thu Huyen ◽  
Dang Thi Minh Hue ◽  
Nguyen Thi Tuyet Mai ◽  
Tran Thi Luyen ◽  
Nguyen Thi Lan

Gases of m-xylene is one of the popurlar toxic pollutants in the exhaust gases, it is emitted into the environment from factories and engines because the fuel in the engine does not burn completely. The best solution in order to remove this toxic gases of m-xylene to protect the environment is transforming them completely into CO2 and H2O by catalysts. Perovskite of LaMnO3 is one of the catalysts that was synthesized and studied the catalytic properties in total oxidation of m-xylene in our previous report. Obtained results showed that the LaMnO3 perovskite has good catalytic characterizations such as large surface area and the amount of α-oxygen adsorbed on the catalyst is large too. So, it exhibits a good catalytic activity in total oxidation of m-xylene at relatively low reaction temperature. In present work, the reaction order  and kinetics of this reaction are determined. The obtained results demonstrated that the reaction order value with respect to m-xylene is equal to about 1, to oxygene is proximately equal to 0 and the order of reaction is equal to about 1. Based on reaction order data, it was thought that the pathway of m-xylene oxidation by air oxygen  over LaMnO3 may be followed through which the Langmuir - Hinshelwood mechanism. Keywords Catalyst, perovskite, oxidation, m-xylene, kinetics References [1] Penã M.A and Fierro J.L.G (2001), << Chemical Stuctures and Performance of Perovskite Oxide>>, Chem. Rev, 101, pp 1981-2018. [2] Seiyama T., Yamazoe N. and Eguchi K. (1985), <<Characterization and Activity of some Mixed Metal Oxide Catalysts>>, Ind. Eng. Chem. Prod. Res. Dev., 24, pp. 19-27.[3] [3] Van Santen R. A., Neurock M. (2006), Molecular Heterogeneous catalysis, Wiley – VCH, pp.62-244. [4] Petrovics, Terlecki - Baricevic A., Karanovic Lj., Kirilov - Stefanov P. , Zdujic M., Dondur V., Paneva D., Mitov I., Rakic V. (2008), <<LaMO3 (M = Mg, Ti, Fe) perovskite type oxides : Preparation, Characterization and Catalytic Properties in Methane deep Oxidation>>, Appl. Catal. B, Env., 79, pp. 186-198. [5] Spinicci R., Tofanari A., Faticanti M., Pettiti I. and Porta P. (2001), <<Hexane Total Oxidation on LaMO3 (M = Mn, Co, Fe) perovskite-type oxides>>, J. Mole. Catal., 176, pp. 247-252. [6] Trần Thị Thu Huyền, Nguyễn Thị Minh Hiền, Nguyễn Hữu Phú (2006), <<Study on the preparation of perovskite oxides La1-xSrxMnO3 (x = 0; 0,3; 0,5) by sol - gel citrate method and their catalytic activity for m-xylene toltal oxidation>>, Hội nghị xúc tác và hấp phụ toàn quốc lần thứ IV, Tp. Hồ Chí Minh, Tr. 477-482.[7] Trần Thị Thu Huyền, Nguyễn Thị Minh Hiền, Nguyễn Hữu Phú (2009), <<Nghiên cứu động học của phản ứng oxi hóa hoàn toàn m-xylen trên các xúc tác perovskit LaMnO3 và La0,7A0,3MnO3 (A = Sr, Ca, Mg)>>, Tạp chí Hóa học, T.47 (6A), Tr 132-136.[8] Geoffrey C. Bond, Catherine Louis, David T. Thompson (2006), <<Catalysis by Gold>>, Catalytic Science Series-Vol.6.


1996 ◽  
Vol 454 ◽  
Author(s):  
Zakiyyah Smith ◽  
Michael Palmieri ◽  
Nancy Buecheler ◽  
Susan A. Jansen

AbstractHeteropoly acids, HPA are well known solid acid and oxidation catalysts that find application in hetergeneous and homogeneous reactions. In the former, surface area and stability problems are diminshed by supporting the HPA. Typical supports include oxide substrates and porous carbon materials. The HPA's show some instability on these supports however. In this work, we demonstrate that HPA encapsulated in sol-gel silica matrices show enhanced catalytic performance without compromising the catalytic activity of the HPA. In addition, the specific role of the support in the catalytic process is described as well.


2014 ◽  
Vol 875-877 ◽  
pp. 213-217 ◽  
Author(s):  
Mohd Razali Sohot ◽  
Umi Sarah Jais ◽  
Muhd Rosli Sulaiman

Selective catalytic reduction (SCR) is a well-proven method to reduce NO emission. However, to choose the right catalyst that provides a surface for reaction between NO and ammonia at low temperatures is a challenging task for a catalysts developers. In an earlier study, we prepared V2O5-CeO2-SiO2 catalyst with increasing V2O5 content by sol-gel route and found that the catalytic activity improved with increasing the V2O5 loading up to 0.5%. The catalytic activity, however, dropped when V2O5 loading was about 1% and increased back when the loading of V2O5 was about 5%. In this study, we looked into the microstructural relationship to explain these findings. The microstructures of the catalysts before and after exposure to NO gas revealed that the catalysts with 0.2% and 0.5% V2O5 were more porous after the reduction process possibly due to improved breakdown of (NH4)HCO3 to NH3 by the possible interaction with the V2O5 and CeO2-containing catalysts which consequently resulted in a more efficient NO reduction to N2 and H2O at low temperature. The microstructure of the catalyst with 1% V2O5 content to 5%, improved back the efficiency although clogging by CeVO4 phase still possible due to its presence based on XRD. The well-ordered micropores before exposure to NO and the more efficient breakdown of (NH4)HCO3 could have contributed to increase back the catalytic activity at low temperature.


2021 ◽  
Vol 21 (12) ◽  
pp. 6160-6167
Author(s):  
Sakthivel Kumaravel ◽  
Sivakumar Thiripuranthagan ◽  
Elangovan Erusappan ◽  
Aishwarya Sivakumar ◽  
Saranraj Kumaravel ◽  
...  

Pristine TiO2 and x% Ru/TiO2 catalysts with different wt.% of Ru (x%= 1.5%, 2%, 2.5% and 3%) were synthesized using sol–gel and simple impregnation methods. Different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), High-resolution transmission electron microscope (HR-TEM), Inductively coupled plasma-optical emission spectrometry (ICP-OES) and Thermogravimetry/Differential thermal analysis (TG/DTA) were used to study the physicochemical and morphological properties. The XRD patterns of the as-prepared pristine TiO2 catalyst showed high crystalline nature. The HR-TEM images revealed that the Ru nanoparticles (NPs) were evenly dispersed on the TiO2 surface. The prepared catalysts were evaluated for their catalytic activity towards the liquid phase hydrogenation of ethyl levulinate under mild reaction conditions (ambient H2 pressure). Among the various catalysts, 2.5% Ru/TiO2 catalyst showed the maximum catalytic activity of 79% ethyl levulinate (EL) conversion with 82% selectivity of γ-valerolactone (GVL). The recyclability test revealed that the most active 2.5% Ru/TiO2 also showed the highest stability of the catalyst under optimized experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document