Ru/TiO2 Nanostructured Catalysts: Synthesis, Characterization and Catalytic Activity Towards Hydrogenation of Ethyl Levulinate

2021 ◽  
Vol 21 (12) ◽  
pp. 6160-6167
Author(s):  
Sakthivel Kumaravel ◽  
Sivakumar Thiripuranthagan ◽  
Elangovan Erusappan ◽  
Aishwarya Sivakumar ◽  
Saranraj Kumaravel ◽  
...  

Pristine TiO2 and x% Ru/TiO2 catalysts with different wt.% of Ru (x%= 1.5%, 2%, 2.5% and 3%) were synthesized using sol–gel and simple impregnation methods. Different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), High-resolution transmission electron microscope (HR-TEM), Inductively coupled plasma-optical emission spectrometry (ICP-OES) and Thermogravimetry/Differential thermal analysis (TG/DTA) were used to study the physicochemical and morphological properties. The XRD patterns of the as-prepared pristine TiO2 catalyst showed high crystalline nature. The HR-TEM images revealed that the Ru nanoparticles (NPs) were evenly dispersed on the TiO2 surface. The prepared catalysts were evaluated for their catalytic activity towards the liquid phase hydrogenation of ethyl levulinate under mild reaction conditions (ambient H2 pressure). Among the various catalysts, 2.5% Ru/TiO2 catalyst showed the maximum catalytic activity of 79% ethyl levulinate (EL) conversion with 82% selectivity of γ-valerolactone (GVL). The recyclability test revealed that the most active 2.5% Ru/TiO2 also showed the highest stability of the catalyst under optimized experimental conditions.

2017 ◽  
Vol 47 ◽  
pp. 17-23 ◽  
Author(s):  
S. Heilman ◽  
L.G.A. Silva

Silver nanoparticles have been used in the medical area due to their remarkable antimicrobial properties. In this sense titanium dioxide nanoparticles obtained by the sol-gel method were used as coating of catheters for subsequent impregnation of silver nanoparticles with gamma irradiation and electron beam at 25 and 50 kGy. This work aimed to study the use of the silver nanoparticles and titanium dioxide as coating of polyurethane Central Venous Catheter (CVC) for antimicrobial activity. Furthermore the amounts of titanium and silver present in the coated catheters had been evaluated by Inductively Coupled Plasma – Optical Emission Spectrometry (ICP OES). Therefore the Raman spectrometry was used to identify the polymorph of titanium oxide, rutile.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 772
Author(s):  
Tian Zhao ◽  
Hexin Zhu ◽  
Ming Dong

A new efficient polyoxometalate composite catalyst of hierarchical MIL-101 and phosphotungstic acid (PTA) was facilely prepared by the immersion method. The material was thoroughly characterized by powder x-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and inductively coupled plasma‒optical emission spectrometry (ICP-OES). Compared to the pristine nonhierarchical MIL-101 composite, the hierarchical composite demonstrated much higher catalytic performance in methanolysis of styrene oxide, such as catalytic activity and reusability.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 540 ◽  
Author(s):  
Izabela Wysocka ◽  
Jan Hupka ◽  
Andrzej Rogala

Dry reforming of methane (DRM) is an eco-friendly method of syngas production due to the utilization of two main greenhouse gases—methane and carbon dioxide. An industrial application of methane dry reforming requires the use of a catalyst with high activity, stability over a long time, and the ability to catalyze a reaction, leading to the needed a hydrogen/carbon monoxide ratio. Thus, the aim of the study was to investigate the effect of support and noble metal particles on catalytic activity, stability, and selectivity in the dry reforming process. Ni and Ni–Ru based catalysts were prepared via impregnation and precipitation methods on SiO2, ZrO2, Al2O3, and MgAl2O4 supports. The obtained catalysts were characterized using X-ray diffractometry (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), Brunauer–Emmett–Teller (BET) specific surface area, and elemental carbon-hydrogen-nitrogen-sulphur analysis (CHNS) techniques. The catalytic activity was investigated in the carbon dioxide reforming of a methane process at 800 °C. Catalysts supported on commercial Al2O3 and spinel MgAl2O4 exhibited the highest activity and stability under DRM conditions. The obtained results clearly indicate that differences in catalytic activity result from the dispersion, size of an active metal (AM), and interactions of the AM with the support. It was also found that the addition of ruthenium particles enhanced the methane conversion and shifted the H2/CO ratio to lower values.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 283
Author(s):  
Ta Anh Tuan ◽  
Elena V. Guseva ◽  
Nguyen Anh Tien ◽  
Ho Tan Dat ◽  
Bui Xuan Vuong

The paper focuses on the acid-free hydrothermal process for the synthesis of bioactive glass. The new method avoids the use of harmful acid catalysts, which are usually used in the sol-gel process. On the other hand, the processing time was reduced compared with the sol-gel method. A well-known ternary bioactive glass 58SiO2-33CaO-9P2O5 (wt%), which has been widely synthesized through the sol-gel method, was selected to apply to this new process. Thermal behavior, textural property, phase composition, morphology, and ionic exchange were investigated by thermal analysis, N2 adsorption/desorption, XRD, FTIR, SEM, and inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. The bioactivity and biocompatibility of synthetic bioactive glass were evaluated by in vitro experiments with a simulated body fluid (SBF) solution and cell culture medium. The obtained results confirmed that the acid-free hydrothermal process is one of the ideal methods for preparing ternary bioactive glass.


2011 ◽  
Vol 1355 ◽  
Author(s):  
Sofia Dembski ◽  
Moritz Milde ◽  
Emeline Dassonneville ◽  
Carsten Gellermann ◽  
Torsten Klockenbring ◽  
...  

ABSTRACTLuminescent lanthanide doped SiO2/Hydroxylapatite (HAp) core/shell nanoparticles (NPs) were synthesized by sol-gel technology. The resulting NPs exhibited an amorphous SiO2 core and a crystalline luminescent shell. The formation of the HAp layer was possible at pH 8.5. The characterization of the resulting NPs was done by transmission electron microscopy, X-ray diffraction analysis, inductively-coupled plasma combined with optical emission spectrometry, and photoluminescence spectroscopy. Additionally, the newly developed SiO2/HAp:Ln3+ core/shell NPs were tested for their biocompatibility, e. g. by an in vitro cell culture based assay.


2020 ◽  
Author(s):  
alessandro pacella ◽  
elisa nardi ◽  
maria rita montereali ◽  
marzia fantauzzi ◽  
antonella rossi ◽  
...  

<p>This study analizes the dissolution reactions, and the corresponding surface modifications, of two amphibole asbestos incubated for 1, 24, 48, 168 and 720 h in a modified Gamble’s solution at pH 4.5. The investigated samples are UICC crocidolite from Koegas Mine, Northern Cape (South Africa), and fibrous tremolite from Montgomery County, Maryland (USA). Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) was used to monitor the ion release into solution, X-Ray Photoelectron Spectroscopy (XPS) was performed to unveil the chemistry of the leached surface, and High Resolution Transmission Electron Microscopy (HR-TEM) was exploited for monitoring the structural modifications of the fibres.</p><p>An incongruent cation mobilization was observed in both samples. Fe mobilization was detected only in UICC crocidolite, due to the occurrence of Fe-bearing accessory phases in the sample (siderite, iron carbonate, and minnesotaite, an iron-bearing phyllosilicate). Notably, tremolite lifetime is shown to be roughly ten times that of UICC crocidolite under the same experimental conditions. This result agrees with previous dissolution studies at pH 7.4 indicating a higher dissolution and surface alteration for UICC crocidolite with respect to tremolite.</p>


Sign in / Sign up

Export Citation Format

Share Document