Facile synthesis of a polythiophene/TiO2 particle composite in aqueous medium and its adsorption performance for Pb(ii)

RSC Advances ◽  
2015 ◽  
Vol 5 (106) ◽  
pp. 86945-86953 ◽  
Author(s):  
Jie Chen ◽  
Jiangtao Feng ◽  
Wei Yan

A polythiophene/TiO2 particle composite was synthesized by a facile and green method in aqueous medium to adsorb Pb2+ ions from aqueous solution, and both of synthesis and adsorption mechanism were proposed.

2013 ◽  
Vol 750-752 ◽  
pp. 1262-1266
Author(s):  
Li Xiu Peng ◽  
Qin Ai Lin

The adsorption process of Cr (VI) in aqueous solution on activated carbon prepared by wheat straw was investigated to study the effect factors on adsorption properties. adsorption mechanism was discussed. The results showed that the adsorption performance was influenced by dosage, initial concentration and adsorption time. Adsorption reached equilibrium after 100 min at temperature 25°C. The highest removal efficiency can reach 94%. The results indicated that activated carbon as adsorbent can effectively deal with waste water containing (VI).


2006 ◽  
Vol 54 (10) ◽  
pp. 133-141 ◽  
Author(s):  
B. Southichak ◽  
K. Nakano ◽  
M. Nomura ◽  
N. Chiba ◽  
O. Nishimura

Reed biomass harvested from wetland constructed for water purification was modified into a biosorbent for Pb(II) removal from aqueous solution. The enhancement of Pb(II) adsorption by reed biosorbent depended not only on the types of reagent used for pretreatment, but also on the pH during the pretreatment process. The mechanisms, as elucidated using relational data obtained from Boehm titration, Fisher esterification and FTIR, involved the conversion of carboxylic groups into carboxylate groups, and proved the role of the carboxylate group, which occupied more than 80% in binding Pb(II). The Langmuir sorption isotherm of Pb(II) by R-NaOH-12 showed Qmax and b values of 0.082 mmol/g and 312.5 g/mmol, suggesting enough adsorption performance to reduce the concentration of Pb(II) to meet the range of WHO guidelines. The salinity of aqueous solution containing NaH2PO4 and NaNO3 promoted the adsorption of Pb(II), while NaCl and Na2SO4 suppressed the adsorption capacity of Pb(II). The adsorption mechanism of reed biosorbent provides valuable insight on the pretreatment effects and the advantages of utilizing this plant as biosorbent for Pb(II) and other heavy metals.


2013 ◽  
Vol 825 ◽  
pp. 568-571
Author(s):  
Namgyu Kim ◽  
Munsik Park ◽  
Jongmoon Park ◽  
Donghee Park

An anionic biosorbent was derived from an industrial fermentation biowate, Corynebacterium glutamicum, by being cross-linked with polyethylenimine (PEI). A fiber form of the biosorbent was used to examine its potentiality of removing anionic metals such as As (V), Cr (VI) and Mn (VII) in aqueous system. As (V) and Cr (VI) were efficiently removed by the biosorbent through anionic adsorption mechanism. Sulfate ion seriously inhibited adsorption of the anionic metals through competitive inhibition with respect to the binding site of the biosorbent. In the case of Mn (VII), its removal mechanism by the biosorbent was not anionic adsorption. Mn (VII) was completely removed in aqueous phase, meanwhile, Mn (II) appeared and increased in proportion to the Mn (VII) depletion. As a result, adsorption coupled reduction was chosen as the mechanism of Mn (VII) removal by the biosorbent. In conclusion, the anionic biosorbent could be used to remove various anionic metals from aqueous solution through anionic adsorption or reduction mechanism.


2014 ◽  
Vol 936 ◽  
pp. 829-833
Author(s):  
Hai Song ◽  
Xing Hai Yu ◽  
Xiao Qin Zhang ◽  
Gui Fang Yan ◽  
Yuan Zhi Zhen

The purpose of this work is to prepare a low-cost biosorbent,Porous Magnetic/Chitosan Resin(MCR), and determine the ability of this biosorbent to removing Ni (II) ion from aqueous medium. Both kinetics and thermodynamic parameters of the adsorption process were also estimated. The thermodynamic parameters indicated an exothermic spontaneous process and the kinetics followed the second-order adsorption process.


Sign in / Sign up

Export Citation Format

Share Document