Effects of multi-walled carbon nanotube functionalization on the morphological and mechanical properties of nanocomposite foams based on poly(vinyl chloride)/(wood flour)/ (multi-walled carbon nanotubes)

2012 ◽  
Vol 18 (3) ◽  
pp. 161-167 ◽  
Author(s):  
I. Ghasemi ◽  
A.T. Farsheh ◽  
Z. Masoomi
2015 ◽  
Vol 3 (21) ◽  
pp. 5573-5579 ◽  
Author(s):  
Yuling Li ◽  
Mingjun Li ◽  
Minglei Pang ◽  
Shengyu Feng ◽  
Jie Zhang ◽  
...  

The specific surface area is a key factor that determines both the electrical and mechanical properties of silicone rubber/MWCNTs.


2019 ◽  
Vol 50 (5) ◽  
pp. 692-715 ◽  
Author(s):  
Hande Sezgin ◽  
Rajesh Mishra ◽  
Jiri Militky ◽  
Omer Berk Berkalp

The influence of adding different types of multi-walled carbon nanotubes on mechanical (tensile strength and impact strength), thermo-mechanical (storage modulus, loss modulus and damping factor) and thermal properties (thermogravimetric and differential scanning calorimetry analysis) of fabric-reinforced polyester-based composite structures are analyzed in this study. Jute, E-glass and carbon fabrics are preferred as the reinforcement materials. Four-plied fabric-reinforced composites are fabricated using vacuum-assisted resin transfer molding technique. Results indicate that adding different types of multi-walled carbon nanotubes have increasing effect on mechanical and thermo-mechanical properties of composite structures; however, they have barely effect on thermal properties. Pristine multi-walled carbon nanotube-added specimens show higher mechanical and thermo-mechanical properties compared to functionalized multi-walled carbon nanotube-added samples.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


2019 ◽  
Vol 30 (8) ◽  
pp. 1216-1224 ◽  
Author(s):  
Mohammad Charara ◽  
Mohammad Abshirini ◽  
Mrinal C Saha ◽  
M Cengiz Altan ◽  
Yingtao Liu

This article presents three-dimensional printed and highly sensitive polydimethylsiloxane/multi-walled carbon nanotube sensors for compressive strain and pressure measurements. An electrically conductive polydimethylsiloxane/multi-walled carbon nanotube nanocomposite is developed to three-dimensional print compression sensors in a freestanding and layer-by-layer manner. The dispersion of multi-walled carbon nanotubes in polydimethylsiloxane allows the uncured nanocomposite to stand freely without any support throughout the printing process. The cross section of the compression sensors is examined under scanning electron microscope to identify the microstructure of nanocomposites, revealing good dispersion of multi-walled carbon nanotubes within the polydimethylsiloxane matrix. The sensor’s sensitivity was characterized under cyclic compression loading at various max strains, showing an especially high sensitivity at lower strains. The sensing capability of the three-dimensional printed nanocomposites shows minimum variation at various applied strain rates, indicating its versatile potential in a wide range of applications. Cyclic tests under compressive loading for over 8 h demonstrate that the long-term sensing performance is consistent. Finally, in situ micromechanical compressive tests under scanning electron microscope validated the sensor’s piezoresistive mechanism, showing the rearrangement, reorientation, and bending of the multi-walled carbon nanotubes under compressive loads, were the main reasons that lead to the piezoresistive sensing capabilities in the three-dimensional printed nanocomposites.


RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103365-103372 ◽  
Author(s):  
Lei Liu ◽  
Dong Wang ◽  
Yuan Hu

Negative graphene oxide was combined with positive chitosan-modified multi-walled carbon nanotubes in aqueous solution and then thermally reduced to fabricate a multi-walled carbon nanotube/graphene (MWCNT/G) hybrid material.


2016 ◽  
Vol 4 (21) ◽  
pp. 3823-3831 ◽  
Author(s):  
Stefano Fedeli ◽  
Alberto Brandi ◽  
Lorenzo Venturini ◽  
Paola Chiarugi ◽  
Elisa Giannoni ◽  
...  

An efficient drug delivery system through a straightforward approach to multi-walled carbon nanotube decoration.


RSC Advances ◽  
2017 ◽  
Vol 7 (45) ◽  
pp. 28556-28563 ◽  
Author(s):  
Jianzhi Huang ◽  
Silan Bai ◽  
Guoqing Yue ◽  
Wenxue Cheng ◽  
Lishi Wang

Coordination matrix/signal amplifier strategy for simultaneous electrochemical determination of cadmium(ii), lead(ii), copper(ii) and mercury(ii) ions based on polyfurfural film/multi-walled carbon nanotubes modified electrode.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7237-7244 ◽  
Author(s):  
Xiaoyu Li ◽  
Hongbo Gu ◽  
Jiurong Liu ◽  
Huige Wei ◽  
Song Qiu ◽  
...  

The multi-walled carbon nanotube (MWNT) nanocomposites with homogenously anchored nanomagnetite of 10–20 nm prepared by a hydrothermal-annealing method exhibit excellent performances as anode materials for lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document