The assembly of polyethyleneimine-entrapped gold nanoparticles onto filter paper for catalytic applications

RSC Advances ◽  
2015 ◽  
Vol 5 (126) ◽  
pp. 104239-104244 ◽  
Author(s):  
Lei Liu ◽  
Yili Zhao ◽  
Qian Chen ◽  
Xiangyang Shi ◽  
Mingwu Shen

Polyethyleneimine-entrapped gold nanoparticles can be assembled onto filter paper via electrostatic interaction for high-performance catalytic applications.

2019 ◽  
Vol 1 (1) ◽  
pp. 342-346 ◽  
Author(s):  
Yili Zhao ◽  
Lei Liu ◽  
Daniel Shi ◽  
Xiangyang Shi ◽  
Mingwu Shen

Palladium nanoparticles can be facilely immobilized onto filter paper via mediation by polyethylenimine for high-performance catalytic applications.


Biomedicines ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 209 ◽  
Author(s):  
Lulu Wu ◽  
Athanasios Mantas ◽  
Simon Gustafsson ◽  
Levon Manukyan ◽  
Albert Mihranyan

This study is dedicated to the rapid removal of protein aggregates and viruses from plasma-derived human serum albumin (HSA) product to reduce the risk of viral contamination and increase biosafety. A two-step filtration approach was implemented to first remove HSA aggregates and then achieve high model virus clearance using a nanocellulose-based filter paper of different thicknesses, i.e., 11 μm (prefilter) and 22 μm (virus filter) at pH 7.4 and room temperature. The pore size distribution of these filters was characterized by nitrogen gas sorption analysis. Dynamic light scattering (DLS) and size-exclusion high performance liquid chromatography (SE-HPLC) were performed to analyze the presence of HSA aggregates in process intermediates. The virus filter showed high clearance of a small-size model virus, i.e., log10 reduction value (LRV) > 5, when operated at 3 and 5 bar, but a distinct decrease in LRV was detected at 1 bar, i.e., LRV 2.65–3.75. The throughput of HSA was also dependent on applied transmembrane pressure as was seen by Vmax values of 110 ± 2.5 L m−2 and 63.6 ± 5.8 L m−2 at 3 bar and 5 bar, respectively. Protein loss was low, i.e., recovery > 90%. A distribution of pore sizes between 40 nm and 60 nm, which was present in the prefilter and absent in the virus filter, played a crucial part in removing the HSA aggregates and minimizing the risk of virus filter fouling. The presented results enable the application of virus removal nanofiltration of HSA in bioprocessing as an alternative to virus inactivation methods based, e.g., on heat treatment.


RSC Advances ◽  
2016 ◽  
Vol 6 (37) ◽  
pp. 31301-31307 ◽  
Author(s):  
Liming Chen ◽  
Anirban Dandapat ◽  
Youju Huang ◽  
Liping Song ◽  
Lei Zhang ◽  
...  

Monodisperse icosahedral gold nanoparticles with tunable plasmonic property and high performance electrochemical sensing was synthesized by a heterogemini surfactant.


2017 ◽  
Vol 5 (36) ◽  
pp. 19316-19322 ◽  
Author(s):  
J. L. Shi ◽  
X. J. Zhao ◽  
L. Y. Zhang ◽  
X. L. Xue ◽  
Z. X. Guo ◽  
...  

Catalysis using gold nanoparticles supported on oxides has been under extensive investigation for many important application processes.


Cellulose ◽  
2018 ◽  
Vol 26 (2) ◽  
pp. 1183-1194 ◽  
Author(s):  
Zhiguo Wang ◽  
Wenwen Zhang ◽  
Juan Yu ◽  
Lijun Zhang ◽  
Liang Liu ◽  
...  

Author(s):  
RADITYA ISWANDANA ◽  
RICHA NURSELVIANA ◽  
SUTRIYO SUTRIYO

Objective: Gold nanoparticles (AuNPs) are highly useful for drug delivery, but their application is limited by their stability as they readily aggregate.This issue can be prevented by adding a stabilizing agent such as resveratrol (RSV), which is a polyphenol derived from plants, that is used to preventcancer. Therefore, we propose a novel method to prepare stable RSV-conjugated nanoparticles modified with polyethylene glycol (RSV-AuNP-PEG).Methods: In the first step, the Turkevich method was used to synthesize the AuNPs. Then, PEG was added as stabilizer agent and conjugated with RSV.The synthesized conjugates were characterized using ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, particle sizeanalysis, and high-performance liquid chromatography.Results: The obtained RSV-AuNP-PEG had a particle size of 83.93 nm with a polydispersity index (PDI) of 0.562 and formed a translucent purple-redfluid in solution. The zeta potential was −22.9 mV, and the highest entrapment efficiency was 75.86±0.66%. For comparison, the RSV-AuNP solutionwas purple and turbid, the particle size was 51.97 nm with a PDI of 0.694, and the zeta potential was −24.6 mV. The stability test results showed thatthe storage stability of RSV-AuNP-PEG was better than that of AuNP-RSV. Further, the RSV-AuNP-PEG was shown to be most stable in 2% bovine serumalbumin (BSA) while the AuNP-RSV was most stable in 2% BSA in phosphate-buffered saline pH 7.4.Conclusion: These results show that modification of RSV-conjugated AuNPs with PEG effectively prevents their aggregation in storage, but only incertain mediums.


Sign in / Sign up

Export Citation Format

Share Document