Transcriptome-wide identification of sucrose synthase genes in Ornithogalum caudatum

RSC Advances ◽  
2016 ◽  
Vol 6 (23) ◽  
pp. 18778-18792 ◽  
Author(s):  
Li-Na Li ◽  
Jian-Qiang Kong

A transcriptome-wide discovery and functional identification of a sucrose synthase family was presented. Importantly, OcSus1 and OcSus2 were first verified to be responsible for the biosynthesis of glucose-containing polysaccharides inO. caudatum.

RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 37370-37384 ◽  
Author(s):  
Sen Yin ◽  
Jian-Qiang Kong

A transcriptome-guided discovery and functional identification of UGE and UXE families were presented. Importantly, OcUGE1/2 and OcUXE1 were preliminarily revealed to be responsible for the biosynthesis of anticancer polysaccharides inO. caudatum.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


1994 ◽  
Vol 269 (35) ◽  
pp. 21929-21932 ◽  
Author(s):  
J.D. Erickson ◽  
H. Varoqui ◽  
M.K. Schäfer ◽  
W. Modi ◽  
M.F. Diebler ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cong Li ◽  
Qiuyi Shen ◽  
Xiang Cai ◽  
Danni Lai ◽  
Lingshang Wu ◽  
...  

Abstract Background Dendrobium catenatum belongs to the Orchidaceae, and is a precious Chinese herbal medicine. In the past 20 years, D. catenatum industry has developed from an endangered medicinal plant to multi-billion dollar grade industry. The necrotrophic pathogen Sclerotium delphinii has a devastating effection on over 500 plant species, especially resulting in widespread infection and severe yield loss in the process of large-scale cultivation of D. catenatum. It has been widely reported that Jasmonate (JA) is involved in plant immunity to pathogens, but the mechanisms of JA-induced plant resistance to S. delphinii are unclear. Results In the present study, the role of JA in enhancing D. catenatum resistance to S. delphinii was investigated. We identified 2 COI1, 13 JAZ, and 12 MYC proteins in D. catenatum genome. Subsequently, systematic analyses containing phylogenetic relationship, gene structure, protein domain, and motif architecture of core JA pathway proteins were conducted in D. catenatum and the newly characterized homologs from its closely related orchid species Phalaenopsis equestris and Apostasia shenzhenica, along with the well-investigated homologs from Arabidopsis thaliana and Oryza sativa. Public RNA-seq data were investigated to analyze the expression patterns of D. catenatum core JA pathway genes in various tissues and organs. Transcriptome analysis of MeJA and S. delphinii treatment showed exogenous MeJA changed most of the expression of the above genes, and several key members, including DcJAZ1/2/5 and DcMYC2b, are involved in enhancing defense ability to S. delphinii in D. catenatum. Conclusions The findings indicate exogenous MeJA treatment affects the expression level of DcJAZ1/2/5 and DcMYC2b, thereby enhancing D. catenatum resistance to S. delphinii. This research would be helpful for future functional identification of core JA pathway genes involved in breeding for disease resistance in D. catenatum.


Sign in / Sign up

Export Citation Format

Share Document