Ion exchange in alginate gels – dynamic behaviour revealed by electron paramagnetic resonance

Soft Matter ◽  
2015 ◽  
Vol 11 (46) ◽  
pp. 8968-8974 ◽  
Author(s):  
Gabriela Ionita ◽  
Ana Maria Ariciu ◽  
David K. Smith ◽  
Victor Chechik

Cation and polyanion exchange in alginate gels were monitored by spin labelling and EPR spectroscopy.

2015 ◽  
Vol 98 (4) ◽  
pp. 866-870 ◽  
Author(s):  
Violetta Kozik ◽  
Krystyna Jarzembek ◽  
Agnieszka Jędrzejowska ◽  
Andrzej Bąk ◽  
Justyna Polak ◽  
...  

Abstract Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r) = 0.90 and determination coefficient (r2) = 0.81 (P <0.05).


Author(s):  
V. V. Ptushenko

This article describes the formation of the chemical electron paramagnetic resonance (EPR) spectroscopy institute established by Academician Vladislav V. Voevodsky (1917–1967) along with the history of the development of the instrumentation basis for this field of science in the Union of Soviet Socialist Republics (USSR). The design of the first EPR spectrometers for the chemical radio spectroscopy initiated the emergence of a new scientific instrumentation field in this country. Based on recollections shared by scientists and engineers and an examination of archive materials, the author reconstructs relevant events and identifies major participants in this process.


2006 ◽  
Vol 911 ◽  
Author(s):  
Wonwoo Lee ◽  
Mary E Zvanut

AbstractThe purpose of this study is to identify the vanadium acceptor levels in semi-insulating (SI) 6H-SiC using optical admittance spectroscopy (OAS) and electron paramagnetic resonance (EPR) spectroscopy. OAS conductance peaks near at 0.67 ± 0.02 eV and 0.70 ± 0.02 eV are identified as V3+/4+ levels at the quasi-cubic sites. An OAS peak at 0.87 eV is assigned to the same transition at the hexagonal site. EPR measurements before illumination revealed the characteristic spectrum of V3+. The presence of the V3+ signal supports the identification of the OAS peaks as transitions from the V3+/4+ level to the conduction band. Photo-induced EPR measurements reveal a change in the intensity of V3+ and V4+ at 0.8 ± 0.1 eV, where the amplitude of the V3+ charge state decreases and that of V4+ increases by approximately equal amounts. Although the individual sites are not resolved in the photo-induced EPR data, the 0.8 eV feature strongly supports the assignment of the three OAS peaks as acceptor levels.


2018 ◽  
Vol 20 (22) ◽  
pp. 15528-15534 ◽  
Author(s):  
P. Neugebauer ◽  
D. Bloos ◽  
R. Marx ◽  
P. Lutz ◽  
M. Kern ◽  
...  

Electron paramagnetic resonance (EPR) is a powerful technique to investigate the electronic and magnetic properties of a wide range of materials.


2020 ◽  
Vol 11 (35) ◽  
pp. 9655-9664
Author(s):  
Yan Wang ◽  
Venkatesan Kathiresan ◽  
Yaoyi Chen ◽  
Yanping Hu ◽  
Wei Jiang ◽  
...  

Site-directed spin labeling (SDSL) of large RNAs for electron paramagnetic resonance (EPR) spectroscopy has remained challenging to date.


2020 ◽  
Vol 48 (6) ◽  
pp. 2830-2840 ◽  
Author(s):  
Jack S Hardwick ◽  
Marius M Haugland ◽  
Afaf H El-Sagheer ◽  
Denis Ptchelkine ◽  
Frank R Beierlein ◽  
...  

Abstract The determination of distances between specific points in nucleic acids is essential to understanding their behaviour at the molecular level. The ability to measure distances of 2–10 nm is particularly important: deformations arising from protein binding commonly fall within this range, but the reliable measurement of such distances for a conformational ensemble remains a significant challenge. Using several techniques, we show that electron paramagnetic resonance (EPR) spectroscopy of oligonucleotides spin-labelled with triazole-appended nitroxides at the 2′ position offers a robust and minimally perturbing tool for obtaining such measurements. For two nitroxides, we present results from EPR spectroscopy, X-ray crystal structures of B-form spin-labelled DNA duplexes, molecular dynamics simulations and nuclear magnetic resonance spectroscopy. These four methods are mutually supportive, and pinpoint the locations of the spin labels on the duplexes. In doing so, this work establishes 2′-alkynyl nitroxide spin-labelling as a minimally perturbing method for probing DNA conformation.


Sign in / Sign up

Export Citation Format

Share Document