Synthesis and photovoltaic properties of dithieno[3,2-b:2′,3′-d]silole-based conjugated copolymers

2015 ◽  
Vol 3 (26) ◽  
pp. 13794-13800 ◽  
Author(s):  
Shanpeng Wen ◽  
Chen Wang ◽  
Pengfei Ma ◽  
Ying-Xuan Zhao ◽  
Chang Li ◽  
...  

Efficient polymer solar cells were fabricated by blending PDTS-DTffBT with PC71BM, and the power conversion efficiency reached 5.26%.

2013 ◽  
Vol 15 (43) ◽  
pp. 19057 ◽  
Author(s):  
Naveen Kumar Elumalai ◽  
Chellappan Vijila ◽  
Rajan Jose ◽  
Kam Zhi Ming ◽  
Amitaksha Saha ◽  
...  

2017 ◽  
Vol 8 (14) ◽  
pp. 2227-2234 ◽  
Author(s):  
Tao Wang ◽  
Lihui Jiang ◽  
Jun Yuan ◽  
Liuliu Feng ◽  
Zhi-Guo Zhang ◽  
...  

Using a fluoropyrido[3,4-b]pyrazine based 2D-conjugated polymer as an electron donor in polymer solar cells, a power conversion efficiency of 6.2% is obtained, which is the highest PCE among the PP-based polymers reported to date.


2017 ◽  
Vol 10 (10) ◽  
pp. 2212-2221 ◽  
Author(s):  
Zhaojun Li ◽  
Xiaofeng Xu ◽  
Wei Zhang ◽  
Xiangyi Meng ◽  
Zewdneh Genene ◽  
...  

High-performance ternary all-polymer solar cells with outstanding efficiency of 9.0% are realized by incorporating two donor and one acceptor polymers with complementary absorption and proper energy level alignment.


1981 ◽  
Vol 59 (6) ◽  
pp. 727-732 ◽  
Author(s):  
Rafik O. Loutfy ◽  
Cheng-Kuo Hsiao

The effect of temperature on the photovoltaic properties of indium/metal-free phthalocyanine Schottky barrier solar cells was investigated in the range 260–350 K. In general, the short circuit photocurrent, Jsc, and fill factor, ff, increased with increasing temperature (in contrast to inorganic photocells). The device series resistance and open circuit photovoltage, Voc, decreased (similar to inorganic photocells) as temperature was raised. An increase in the overall power conversion efficiency, η, has been observed with increase of temperature. In the case of x-H2Pc, the power conversion efficiency increased by 2.5 times due to a temperature rise of 60 °C above ambient. Thus, for operation at temperatures above ambient, organic solar cells may offer a significant advantage over inorganic cells.Analysis of the variation of the photovoltage with temperature showed that the decrease in Voc is mainly due to variation injunction impedance, which is controlled by thermionic current at high temperature and ionized impurity at low temperature.


Author(s):  
Ritesh Kant Gupta ◽  
Rabindranath Garai ◽  
Maimur Hossain ◽  
Mohammad Adil Afroz ◽  
Dibashmoni Kalita ◽  
...  

Achieving high power conversion efficiency (PCE) polymer solar cells (PSCs) has been very challenging and the ultimate goal for their commercialization. Precise investigation of the active layer morphology and newer...


Sign in / Sign up

Export Citation Format

Share Document