A high energy density Li2S@C nanocomposite cathode with a nitrogen-doped carbon nanotube top current collector

2015 ◽  
Vol 3 (37) ◽  
pp. 18913-18919 ◽  
Author(s):  
Su Zhang ◽  
Meinan Liu ◽  
Fei Ma ◽  
Fangmin Ye ◽  
Hongfei Li ◽  
...  

High energy density lithium sulfur batteries with 804 Wh/kg were reported based on sheet-like Li2S@C composites with the assistance of nitrogen doped carbon nanotube film.

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1724 ◽  
Author(s):  
Benben Wei ◽  
Chaoqun Shang ◽  
Xiaoying Pan ◽  
Zhihong Chen ◽  
Lingling Shui ◽  
...  

Lithium–sulfur batteries (LSBs) are regarded as one of the most promising energy-recycling storage systems due to their high energy density (up to 2600 Wh kg−1), high theoretical specific capacity (as much as 1672 mAh g−1), environmental friendliness, and low cost. Originating from the complicated redox of lithium polysulfide intermediates, Li–S batteries suffer from several problems, restricting their application and commercialization. Such problems include the shuttle effect of polysulfides (Li2Sx (2 < x ≤ 8)), low electronic conductivity of S/Li2S/Li2S2, and large volumetric expansion of S upon lithiation. In this study, a lotus root-like nitrogen-doped carbon nanofiber (NCNF) structure, assembled with vanadium nitride (VN) catalysts, was fabricated as a 3D freestanding current collector for high performance LSBs. The lotus root-like NCNF structure, which had a multichannel porous nanostructure, was able to provide excellent (ionically/electronically) conductive networks, which promoted ion transport and physical confinement of lithium polysulfides. Further, the structure provided good electrolyte penetration, thereby enhancing the interface contact with active S. VN, with its narrow resolved band gap, showed high electrical conductivity, high catalytic effect and polar chemical adsorption of lithium polysulfides, which is ideal for accelerating the reversible redox kinetics of intermediate polysulfides to improve the utilization of S. Tests showed that the VN-decorated multichannel porous carbon nanofiber structure retained a high specific capacity of 1325 mAh g−1 after 100 cycles at 0.1 C, with a low capacity decay of 0.05% per cycle, and demonstrated excellent rate capability.


Ionics ◽  
2021 ◽  
Author(s):  
XiaoQin Wu ◽  
ZhengGuang Hu ◽  
Kai Cao ◽  
HuiZi Ye ◽  
FengLiang Liu ◽  
...  

2021 ◽  
Author(s):  
Zhikang Wang ◽  
Guiqiang Cao ◽  
Da Bi ◽  
Tian-Xiong Tan ◽  
Qingxue Lai ◽  
...  

Lithium-Sulfur batteries have been regarded as the most promising electrochemical energy storage device in consideration of their satisfactory high specific capacity and high energy density. However, the inferior conversion efficiency...


Nanoscale ◽  
2021 ◽  
Author(s):  
Fanglei Zeng ◽  
Fang Wang ◽  
Ning Li ◽  
Ke Meng Song ◽  
Shi-Ye Chang ◽  
...  

Li-S battery is considered as one of the most promising battery system because of its large theoretical capacity and high energy density. However, the “shuttle effect” of soluble polysulfides and...


2014 ◽  
Vol 24 (25) ◽  
pp. 3953-3961 ◽  
Author(s):  
Conglai Long ◽  
Dongping Qi ◽  
Tong Wei ◽  
Jun Yan ◽  
Lili Jiang ◽  
...  

2019 ◽  
Vol 6 (5) ◽  
pp. 1466-1474 ◽  
Author(s):  
Kaixiong Xiang ◽  
Manfang Chen ◽  
Jun Hu ◽  
Sicheng Wang ◽  
Xiaoyu Wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document