A [2,2]paracyclophane triarylamine-based hole-transporting material for high performance perovskite solar cells

2015 ◽  
Vol 3 (48) ◽  
pp. 24215-24220 ◽  
Author(s):  
Sungmin Park ◽  
Jin Hyuck Heo ◽  
Cheol Hong Cheon ◽  
Heesuk Kim ◽  
Sang Hyuk Im ◽  
...  

We report a new hole transporting material (HTM) based on [2,2]paracyclophane triarylamine. Due to its higher charge mobility compared with spiro-OMeTAD, the solar cell device incorporating the new HTM achieved a high photovoltaic performance with a PCE of 17.6%.

2021 ◽  
Author(s):  
Kun-Mu Lee ◽  
Jui-Yu Yang ◽  
Ping-Sheng Lai ◽  
Ke-Jyun Luo ◽  
Ting Yu Yang ◽  
...  

A new cyclopentadithiophene (CPDT)-based organic small molecule serves as an efficient dopant-free hole transporting material (HTM) for perovskite solar cells (PSCs). Upon incorporation of two carbazole groups, the resulting CPDT-based...


2021 ◽  
Vol 119 (13) ◽  
pp. 133904
Author(s):  
Binbin Wang ◽  
Lingwei Xue ◽  
Shiqi Wang ◽  
Yao Li ◽  
Lele Zang ◽  
...  

2015 ◽  
Vol 17 (7) ◽  
pp. 4937-4944 ◽  
Author(s):  
Huiyun Wei ◽  
Jiangjian Shi ◽  
Xin Xu ◽  
Junyan Xiao ◽  
Jianheng Luo ◽  
...  

A MIS back contact was constructed by introducing an ultrathin AlOxlayer to improve the performance of HTM-free perovskite solar cells.


2018 ◽  
Vol 66 (2) ◽  
pp. 109-114
Author(s):  
Najmin Ara Sultana ◽  
Md Obidul Islam ◽  
Mainul Hossain ◽  
Zahid Hasan Mahmood

In recent times, planar organo-metal halide perovskite solar cells (PSCs) achieved high power conversion efficiency (PCE > 22%). Mixed organic-inorganic halide perovskites, with excellent light harvesting properties, have evolved as a promising class of semiconductors for photovoltaics. In this work, compositional and electrical characterizations of materials used for different layers of PSC have been studied. One dimensional solar cell simulator wx-AMPS is used for numerical simulation of such devices and all simulations are done under AM1.5 illuminations and 300K temperature. Investigating the influences of thickness of electron transport material (ETM), hole transporting material (HTM) and absorber on the photovoltaic performance of PSCs, it is observed that, increase in thickness of perovskite (MAPbI3) results in the increase in PCE of solar cells, whereas increase in thickness of ETM layer results in decrease in the efficiency of the devices. The ETM plays a vital role on the performance of PSC. In this paper, for the first time performances of PSC for three different ETMs (TiO2, ZnO or SnO2) are calculated and analyzed simultaneously with the simulator wx-AMPS. The photovoltaic performances have been explored and efficiencies of 27.6%, 27.5% and 28.02% are reported for perovskite solar cells with TiO2, ZnO and SnO2 as ETM respectively for a specific thickness. Finally, this simulation study concludes that ZnO and SnO2 may be effective alternatives of the commonly used material, TiO2 as they are economically more potential and give somewhat better photovoltaic performance. Dhaka Univ. J. Sci. 66(2): 109-114, 2018 (July)


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2249
Author(s):  
Sanghyun Paek

Recently, perovskite solar cells have been in the spotlight due to several of their advantages. Among the components of PSCs, hole transporting materials (HTMs) re the most important factors for achieving high performance and a stable device. Here, we introduce a new D–π–D type hole transporting material incorporating Tips-anthracene as a π–conjugation part and dimethoxy-triphenylamine as a donor part (which can be easily synthesized using commercially available materials). Through the measurement of various optical properties, the new HTM not only has an appropriate energy level but also has excellent hole transport capability. The device with PEH-16 has a photovoltaic conversion efficiency of 17.1% under standard one sun illumination with negligible hysteresis, which can be compared to a device using Spiro_OMeTAD under the same conditions. Ambient stability for 1200 h shown that 98% of PEH-16 device from the initial PCE was retained, indicating that the devices had good long-term stability.


2016 ◽  
Vol 94 (4) ◽  
pp. 352-359 ◽  
Author(s):  
Andrew M. Namespetra ◽  
Arthur D. Hendsbee ◽  
Gregory C. Welch ◽  
Ian G. Hill

Three low-cost propeller-shaped small molecules based on a triphenylamine core and the high-performance donor molecule 7,7′-[4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole] (DTS(FBTTh2)2) were investigated as hole-transporting materials in perovskite solar cells. Each hole-transporting material was designed with highly modular side arms, allowing for different bandgaps and thin-film properties while maintaining a consistent binding energy of the highest occupied molecular orbitals to facilitate hole extraction from the perovskite active layer. Perovskite solar cell devices were fabricated with each of the three triphenylamine-based hole-transporting materials and DTS(FBTTh2)2 and were compared to devices with 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) hole-transporting layers. Each of our triphenylamine hole-transporting materials and DTS(FBTTh2)2 displayed surface morphologies that were considerably rougher than that of spiro-OMeTAD; a factor that may contribute to lower device performance. It was found that using inert, insulating polymers as additives with DTS(FBTTh2)2 reduced the surface roughness, resulting in devices with higher photocurrents.


Sign in / Sign up

Export Citation Format

Share Document