scholarly journals Comparative Performance Study of Perovskite Solar Cell for Different Electron Transport Materials

2018 ◽  
Vol 66 (2) ◽  
pp. 109-114
Author(s):  
Najmin Ara Sultana ◽  
Md Obidul Islam ◽  
Mainul Hossain ◽  
Zahid Hasan Mahmood

In recent times, planar organo-metal halide perovskite solar cells (PSCs) achieved high power conversion efficiency (PCE > 22%). Mixed organic-inorganic halide perovskites, with excellent light harvesting properties, have evolved as a promising class of semiconductors for photovoltaics. In this work, compositional and electrical characterizations of materials used for different layers of PSC have been studied. One dimensional solar cell simulator wx-AMPS is used for numerical simulation of such devices and all simulations are done under AM1.5 illuminations and 300K temperature. Investigating the influences of thickness of electron transport material (ETM), hole transporting material (HTM) and absorber on the photovoltaic performance of PSCs, it is observed that, increase in thickness of perovskite (MAPbI3) results in the increase in PCE of solar cells, whereas increase in thickness of ETM layer results in decrease in the efficiency of the devices. The ETM plays a vital role on the performance of PSC. In this paper, for the first time performances of PSC for three different ETMs (TiO2, ZnO or SnO2) are calculated and analyzed simultaneously with the simulator wx-AMPS. The photovoltaic performances have been explored and efficiencies of 27.6%, 27.5% and 28.02% are reported for perovskite solar cells with TiO2, ZnO and SnO2 as ETM respectively for a specific thickness. Finally, this simulation study concludes that ZnO and SnO2 may be effective alternatives of the commonly used material, TiO2 as they are economically more potential and give somewhat better photovoltaic performance. Dhaka Univ. J. Sci. 66(2): 109-114, 2018 (July)

2015 ◽  
Vol 3 (48) ◽  
pp. 24215-24220 ◽  
Author(s):  
Sungmin Park ◽  
Jin Hyuck Heo ◽  
Cheol Hong Cheon ◽  
Heesuk Kim ◽  
Sang Hyuk Im ◽  
...  

We report a new hole transporting material (HTM) based on [2,2]paracyclophane triarylamine. Due to its higher charge mobility compared with spiro-OMeTAD, the solar cell device incorporating the new HTM achieved a high photovoltaic performance with a PCE of 17.6%.


2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


Author(s):  
Zhihai Liu ◽  
Lei Wang ◽  
Chongyang Xu ◽  
Xiaoyin Xie

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we fabricated electron-transport-layer-free...


2019 ◽  
Vol 43 (18) ◽  
pp. 7130-7135 ◽  
Author(s):  
Xiaomeng Zhu ◽  
Jing Sun ◽  
Shuai Yuan ◽  
Ning Li ◽  
Zhiwen Qiu ◽  
...  

The solar cell with carbon QDs-doped PCBM as its electron transporting layer shows the highest PCE of 18.1%.


RSC Advances ◽  
2017 ◽  
Vol 7 (46) ◽  
pp. 28610-28615 ◽  
Author(s):  
P. S. Chandrasekhar ◽  
Vamsi K. Komarala

Perovskite solar cells (PSCs) have been fabricated by a graphene/ZnO nanocomposite (G/ZnO NC) as an electron transporting layer.


2015 ◽  
Vol 17 (7) ◽  
pp. 4937-4944 ◽  
Author(s):  
Huiyun Wei ◽  
Jiangjian Shi ◽  
Xin Xu ◽  
Junyan Xiao ◽  
Jianheng Luo ◽  
...  

A MIS back contact was constructed by introducing an ultrathin AlOxlayer to improve the performance of HTM-free perovskite solar cells.


2021 ◽  
Vol 24 (3) ◽  
pp. 341-347
Author(s):  
K. Bhavsar ◽  
◽  
P.B. Lapsiwala ◽  

Perovskite solar cells have become a hot topic in the solar energy device area due to high efficiency and low cost photovoltaic technology. However, their function is limited by expensive hole transport material (HTM) and high temperature process electron transport material (ETM) layer is common device structure. Numerical simulation is a crucial technique in deeply understanding the operational mechanisms of solar cells and structure optimization for different devices. In this paper, device modelling for different perovskite solar cell has been performed for different ETM layer, namely: TiO2, ZnO, SnO2, PCBM (phenyl-C61-butyric acid methyl ester), CdZnS, C60, IGZO (indium gallium zinc oxide), WS2 and CdS and effect of band gap upon the power conversion efficiency of device as well as effect of absorber thickness have been examined. The SCAPS 1D (Solar Cell Capacitance Simulator) has been a tool used for numerical simulation of these devices.


2019 ◽  
Vol 7 (17) ◽  
pp. 5028-5036 ◽  
Author(s):  
M. Thambidurai ◽  
Shini Foo ◽  
K. M. Muhammed Salim ◽  
P. C. Harikesh ◽  
Annalisa Bruno ◽  
...  

Simultaneous improvement in transparency, conductivity, and energy level alignment was attained via a highly efficient AlIn-TiO2 ETL with the unrivaled PCE of 19%.


Sign in / Sign up

Export Citation Format

Share Document