scholarly journals Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration

2015 ◽  
Vol 3 (38) ◽  
pp. 7560-7576 ◽  
Author(s):  
Daming Wang ◽  
Frederik Romer ◽  
Louise Connell ◽  
Claudia Walter ◽  
Eduardo Saiz ◽  
...  

Inorganic/organic sol–gel hybrids have nanoscale co-networks of organic and inorganic components that give them the unique potential of tailored mechanical properties and controlled biodegradation in tissue engineering applications.

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 457 ◽  
Author(s):  
Rodrigo Urruela-Barrios ◽  
Erick Ramírez-Cedillo ◽  
A. Díaz de León ◽  
Alejandro Alvarez ◽  
Wendy Ortega-Lara

Three-dimensional (3D) printing technologies have become an attractive manufacturing process to fabricate scaffolds in tissue engineering. Recent research has focused on the fabrication of alginate complex shaped structures that closely mimic biological organs or tissues. Alginates can be effectively manufactured into porous three-dimensional networks for tissue engineering applications. However, the structure, mechanical properties, and shape fidelity of 3D-printed alginate hydrogels used for preparing tissue-engineered scaffolds is difficult to control. In this work, the use of alginate/gelatin hydrogels reinforced with TiO2 and β-tricalcium phosphate was studied to tailor the mechanical properties of 3D-printed hydrogels. The hydrogels reinforced with TiO2 and β-TCP showed enhanced mechanical properties up to 20 MPa of elastic modulus. Furthermore, the pores of the crosslinked printed structures were measured with an average pore size of 200 μm. Additionally, it was found that as more layers of the design were printed, there was an increase of the line width of the bottom layers due to its viscous deformation. Shrinkage of the design when the hydrogel is crosslinked and freeze dried was also measured and found to be up to 27% from the printed design. Overall, the proposed approach enabled fabrication of 3D-printed alginate scaffolds with adequate physical properties for tissue engineering applications.


2016 ◽  
Vol 7 (14) ◽  
pp. 2553-2564 ◽  
Author(s):  
Yating Jia ◽  
Weizhong Wang ◽  
Xiaojun Zhou ◽  
Wei Nie ◽  
Liang Chen ◽  
...  

A poly(glycerol sebacate)-based elastomeric copolyesters with improved mechanical properties and higher water uptake capacity.


2006 ◽  
Vol 96 (2) ◽  
pp. 392-400 ◽  
Author(s):  
Vipin Verma ◽  
Poonam Verma ◽  
Santosh Kar ◽  
Pratima Ray ◽  
Alok R. Ray

RSC Advances ◽  
2015 ◽  
Vol 5 (78) ◽  
pp. 63478-63488 ◽  
Author(s):  
Sofia M. Saraiva ◽  
Sónia P. Miguel ◽  
Maximiano P. Ribeiro ◽  
Paula Coutinho ◽  
Ilídio J. Correia

In the area of regenerative medicine different approaches have been studied to restore the native structure of damaged tissues. Herein, the suitability of a photocrosslinkable hydrogel for tissue engineering applications was studied.


2013 ◽  
Vol 683 ◽  
pp. 168-171 ◽  
Author(s):  
Tatiana Patrício ◽  
Antonio Gloria ◽  
Paulo J. Bártolo

This paper investigates the use of PCL and PCL/PLA scaffolds, produced using a novel additive biomanufacturing system called BioCell Printing, for bone tissue engineering applications. Results show that the BioCell Printing system produces scaffolds with regular and reproducible architecture, presenting no toxicity and enhancing cell attachment and proliferation. It was also possible to observe that the addition of PLA to PCL scaffolds strongly improves the biomechanical performance of the constructs.


2008 ◽  
Vol 587-588 ◽  
pp. 62-66 ◽  
Author(s):  
Hermes S. Costa ◽  
Alexandra A.P. Mansur ◽  
Edel Figueiredo Barbosa-Stancioli ◽  
Marivalda Pereira ◽  
Herman S. Mansur

Bioactive glasses are materials that have been used for the repair and reconstruction of diseased bone tissues, as they exhibit direct bonding with human bone tissues. However, bioactive glasses have low mechanical properties compared to cortical and cancellous bone. On the other hand, composite materials of biodegradable polymers with inorganic bioactive glasses are of particular interest to engineered scaffolds because they often show an excellent balance between strength and toughness and usually improved characteristics compared to their individual components. Composite bioactive glass-polyvinyl alcohol foams for use as scaffolds in tissue engineering were previously developed using the sol-gel route. The goal of this work was the synthesis of composite foams modified with higher amounts of PVA. Samples were characterized by morphological and chemical analysis. The mechanical behavior of the obtained materials was also investigated. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioactive glass composition ratios affect the synthesis procedure. Foams with up to 80 wt% polymer content were obtained. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm and improved mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document