mucosal immunization
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 16)

H-INDEX

43
(FIVE YEARS 4)

ACS Nano ◽  
2021 ◽  
Author(s):  
Uday S. Kumar ◽  
Rayhaneh Afjei ◽  
Katherine Ferrara ◽  
Tarik F. Massoud ◽  
Ramasamy Paulmurugan

Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1177
Author(s):  
Valeria Trincado ◽  
Rikhav P. Gala ◽  
Javier O. Morales

Currently, most vaccines available on the market are for parental use; however, this may not be the best option on several occasions. Mucosal routes of administration such as intranasal, sublingual, and buccal generate great interest due to the benefits they offer. These range from increasing patient compliance to inducing a more effective immune response than that achieved through conventional routes. Due to the activation of the common mucosal immune system, it is possible to generate an effective systemic and local immune response, which is not achieved through parenteral administration. Protection against pathogens that use mucosal entry routes is provided by an effective induction of mucosal immunity. Mucosal delivery systems are being developed, such as films and microneedles, which have proven to be effective, safe, and easy to administer. These systems have multiple advantages over commonly used injections, which are simple to manufacture, stable at room temperature, painless for the patient since they do not require puncture. Therefore, these delivery systems do not require to be administered by medical personnel; in fact, they could be self-administered.


2021 ◽  
Author(s):  
Jesse M. Hall ◽  
Graham J. Bitzer ◽  
Megan A. DeJong ◽  
Jason Kang ◽  
Ting Y. Wong ◽  
...  

Pertussis is a respiratory disease caused by the Gram-negative pathogen, Bordetella pertussis ( Bp ). The transition from a whole cell pertussis vaccine (wP; DTP) to an acellular pertussis vaccine (aP; DTaP; Tdap) correlates with an increase in pertussis cases, despite widespread vaccine implementation and coverage, and it is now appreciated that the protection provided by aP rapidly wanes. To recapitulate the localized immunity observed from natural infection, mucosal vaccination with aP was explored using the coughing rat model of pertussis. Overall, our goal was to evaluate the route of vaccination in the coughing rat model of pertussis. Immunity induced by both oral gavage (OG) and intranasal (IN) vaccination of aP in Bp challenged rats over a nine-day infection was compared to intramuscular (IM)-wP and IM-aP immunized rats that were used as positive controls. Our data demonstrate that mucosal immunization of aP resulted in production of anti- Bp IgG antibody titers similar to IM-wP and IM-aP vaccinated controls post-challenge. IN-aP also induced anti- Bp IgA antibodies in the nasal cavity. Immunization with IM-wP, IM-aP, IN-aP, and OG-aP immunization protected against Bp induced cough, while OG-aP immunization did not protect against respiratory distress. Mucosal immunization by both IN and OG administration protected against acute inflammation and decreased bacterial burden in the lung compared to mock vaccinated challenge (MVC) rats. The data presented in this study suggests that mucosal vaccination with aP can induce a mucosal immune response and provide protection against Bp challenge. This study highlights the potential benefits and uses of the coughing rat model of pertussis; however, further questions regarding waning immunity still require additional investigation.


2021 ◽  
Author(s):  
Jesse Michael Hall ◽  
Graham J Bitzer ◽  
Megan A DeJong ◽  
Jason Kang ◽  
Ting Y. Wong ◽  
...  

Pertussis is a respiratory disease caused by the Gram-negative pathogen, Bordetella pertussis (Bp). The transition from a whole cell pertussis vaccine (wP; DTP) to an acellular pertussis vaccine (aP; DTaP; Tdap) correlates with an increase in pertussis cases, despite widespread vaccine implementation and coverage, and it is now appreciated that the protection provided by aP rapidly wanes. To recapitulate the localized immunity observed from natural infection, mucosal vaccination with aP was explored using the coughing rat model of pertussis. Immunity induced by both oral gavage (OG) and intranasal (IN) vaccination of aP in Bp challenged rats over a nine-day infection was compared to intramuscular (IM)-wP and IM-aP immunized rats that were used as positive controls as IM immunization is the current route for wP and aP vaccination. Our data demonstrate that both IN and OG immunization of aP resulted in production of anti-Bp IgG antibody titers similar to IM-wP and IM-aP vaccinated controls post-challenge. IN-aP also induced anti-Bp IgA antibodies in the nasal cavity. Immunization with IM-wP, IM-aP, IN-aP, and OG-aP immunization protected against Bp induced cough, while OG-aP immunization did not protect against respiratory distress Mucosal immunization (IN-aP and OG-aP) also protected against acute inflammation and decreased bacterial burden in the lung compared to mock vaccinated challenge (MVC) rats. The data presented in this study suggests that mucosal vaccination with aP can induce a mucosal immune response and provide protection against Bp> challenge.


2021 ◽  
Vol 12 ◽  
Author(s):  
Violaine Dubois ◽  
Camille Locht

BackgroundCurrent vaccination strategies against pertussis are sub-optimal. Optimal protection against Bordetella pertussis, the causative agent of pertussis, likely requires mucosal immunity. Current pertussis vaccines consist of inactivated whole B. pertussis cells or purified antigens thereof, combined with diphtheria and tetanus toxoids. Although they are highly protective against severe pertussis disease, they fail to elicit mucosal immunity. Compared to natural infection, immune responses following immunization are short-lived and fail to prevent bacterial colonization of the upper respiratory tract. To overcome these shortcomings, efforts have been made for decades, and continue to be made, toward the development of mucosal vaccines against pertussis.ObjectivesIn this review we systematically analyzed published literature on protection conferred by mucosal immunization against pertussis. Immune responses mounted by these vaccines are summarized.MethodThe PubMed Library database was searched for published studies on mucosal pertussis vaccines. Eligibility criteria included mucosal administration and the evaluation of at least one outcome related to efficacy, immunogenicity and safety.ResultsWhile over 349 publications were identified by the search, only 63 studies met the eligibility criteria. All eligible studies are included here. Initial attempts of mucosal whole-cell vaccine administration in humans provided promising results, but were not followed up. More recently, diverse vaccination strategies have been tested, including non-replicating and replicating vaccine candidates given by three different mucosal routes: orally, nasally or rectally. Several adjuvants and particulate formulations were tested to enhance the efficacy of non-replicating vaccines administered mucosally. Most novel vaccine candidates were only tested in animal models, mainly mice. Only one novel mucosal vaccine candidate was tested in baboons and in human trials.ConclusionThree vaccination strategies drew our attention, as they provided protective and durable immunity in the respiratory tract, including the upper respiratory tract: acellular vaccines adjuvanted with lipopeptide LP1569 and c-di-GMP, outer membrane vesicles and the live attenuated BPZE1 vaccine. Among all experimental vaccines, BPZE1 is the only one that has advanced into clinical development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zonghui Zuo ◽  
Yongjuan Zou ◽  
Qiang Li ◽  
Yongxia Guo ◽  
Tianyuan Zhang ◽  
...  

AbstractVaccines based on live attenuated Chlamydia elementary bodies (EBs) can cause disease in vaccinated animals and the comparably safer inactivated whole EBs are only marginally protective. Recent studies show that a vaccine formulation comprising UV-inactivated EBs (EB) and appropriate mucosal delivery systems and/or adjuvants induced significant protective immunity. We tested the hypothesis that intranasal delivery of UV-inactivated C. psittaci EB formulated in Vibrio cholerae ghosts (VCG)-chitosan nanoparticles will induce protective immunity against intranasal challenge in SPF chickens. We first compared the impact of VCG and CpG adjuvants on protective immunity following IN mucosal and IM systemic delivery of EB formulated in chitosan hydrogel/microspheres. Immunologic analysis revealed that IN immunization in the presence of VCG induced higher levels of IFN-γ response than IM delivery or the CpG adjuvanted groups. Also, vaccine efficacy evaluation showed enhanced pharyngeal bacterial clearance and protection against lung lesions with the VCG adjuvanted vaccine formulation, thereby establishing the superior adjuvanticity of VCG over CpG. We next evaluated the impact of different concentrations of VCG on protective immunity following IN mucosal immunization. Interestingly, the adjuvanticity of VCG was concentration-dependent, since protective immunity induced following IN mucosal immunization showed dose-dependent immune responses and protection. These studies reveal that formulation of inactivated chlamydial antigens with adjuvants, such as VCG and chitosan increases their ability to induce protective immune responses against challenge.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Nittaya Khakhum ◽  
Preeti Bharaj ◽  
David H. Walker ◽  
Alfredo G. Torres ◽  
Janice J. Endsley

AbstractMelioidosis, caused by Burkholderia pseudomallei (Bpm), lacks a vaccine. We identify the immune correlates of protection induced by B. mallei ΔtonB Δhcp1 (CLH001) and Bpm ΔtonB Δhcp1 (PBK001) vaccines against inhalational melioidosis. Mucosal immunization with either vaccine generates Bpm-specific IgM and IgG (IgG2b/c > IgG1 > IgG3) antibodies in sera and lungs, and lung IgA antibodies. Sera confers complement-independent bactericidal activity and macrophages opsonophagocytic uptake but is insufficient in passive transfer experiments to provide significant protection. Both vaccines elicit memory Th1 and Th17 CD4+ T-cell responses in lung and spleen after Bpm antigen-specific recall. The PBK001 vaccine is superior in generating respiratory IgA post-boost, anamnestic IgG at challenge, T-cell recall to specific antigen, and development of diverse polyfunctional memory T-cell pools. Analysis of lung histology suggests that potent polyfunctional T-cell memory and/or IL-17 signatures generated with PBK001 vaccination may be associated with moderate lung inflammation post vaccination.


2020 ◽  
Vol 21 (12) ◽  
pp. 1276-1284
Author(s):  
Surendra Saraf ◽  
Shailesh Jain ◽  
Rudra Narayan Sahoo ◽  
Subrata Mallick

The immune system plays an important role in the prevention of infection and forms the first line of defense against pathogen attack. Delivering of antigen through mucosal route may elicit mucosal immune system as the mucosal surface is the most common site of pathogen entry. Mucosal immune system will be capable to counter pathogen at mucosal surface. Oral mucosal immunization opens the ways to deliver antigens at gut-associated lymphoid tissue. This can elicit both local and systemic immune response. Mucosal vaccines are economical, highly accessible, non parenteral delivery and capacity to produce mass immunization at the time of pandemics. To deliver antigens on the mucosal surface of the gastrointestinal tract, the immune system relies on specialized epithelial cell i.e. Microfold (M)-cell. An approach to exploit the targeting specific receptors on M-cell for entry of antigens has made a breakthrough in vaccine development. In this review, various strategies have been discussed for the possible entry of antigens through M-cells and an approach to increase the uptake and efficacy of vaccines for oral mucosal immunization.


Nanoscale ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 3076-3089
Author(s):  
Sijin Li ◽  
Wenbing Zhu ◽  
Chao Ye ◽  
Wenjia Sun ◽  
Hanghang Xie ◽  
...  

In this study, we proposed that local mucosal immunization of nanofibers via the intravaginal route represented a promising vaccination strategy for the treatment of genital tumor lesions such as cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document