scholarly journals Cellular endocytosis and trafficking of cholera toxin B-modified mesoporous silica nanoparticles

2016 ◽  
Vol 4 (7) ◽  
pp. 1254-1262 ◽  
Author(s):  
William A. Walker ◽  
Mubin Tarannum ◽  
Juan L. Vivero-Escoto

Mesoporous silica nanoparticles were functionalized with cholera toxin subunit B protein to influence their intracellular trafficking pathways.

2021 ◽  
Author(s):  
Janet R Keast ◽  
Peregrine B Osborne ◽  
John-Paul Fuller-Jackson

This protocol is used for immunohistochemical visualisation of cholera toxin subunit B within afferents innervating the lower urinary tract in cryosections of rat lumbosacral spinal cord. Free-floating sections are processed in a double labelling protocol to distinguish regions of innervation by these afferents. Cholera toxin B antibody [lower urinary tract afferents] Choline acetyltransferase antibody [preganglionic autonomic neurons and motoneurons]


1998 ◽  
Author(s):  
Jessica Dang ◽  
Suzanne Kracke ◽  
Peter A. Emanuel ◽  
Michael J. Gostomski ◽  
Darrel E. Menking

2020 ◽  
Vol 20 (11) ◽  
pp. 1001-1016
Author(s):  
Sandra Ramírez-Rave ◽  
María Josefa Bernad-Bernad ◽  
Jesús Gracia-Mora ◽  
Anatoly K. Yatsimirsky

Hybrid materials based on Mesoporous Silica Nanoparticles (MSN) have attracted plentiful attention due to the versatility of their chemistry, and the field of Drug Delivery Systems (DDS) is not an exception. MSN present desirable biocompatibility, high surface area values, and a well-studied surface reactivity for tailoring a vast diversity of chemical moieties. Particularly important for DDS applications is the use of external stimuli for drug release. In this context, light is an exceptional alternative due to its high degree of spatiotemporal precision and non-invasive character, and a large number of promising DDS based on photoswitchable properties of azobenzenes have been recently reported. This review covers the recent advances in design of DDS using light as an external stimulus mostly based on literature published within last years with an emphasis on usually overlooked underlying chemistry, photophysical properties, and supramolecular complexation of azobenzenes.


Sign in / Sign up

Export Citation Format

Share Document