scholarly journals Hue-based quantification of mechanochromism towards a cost-effective detection of mechanical strain in polymer systems

2017 ◽  
Vol 53 (1) ◽  
pp. 248-251 ◽  
Author(s):  
A. Battisti ◽  
P. Minei ◽  
A. Pucci ◽  
R. Bizzarri

Hue evaluation from HSV colour space provides a fast and cost-effective tool for the detection of deformation in polymers loaded with the mechanosensitive fluorescent dye BBS.

2021 ◽  
Vol 2083 (4) ◽  
pp. 042037
Author(s):  
Xia Yang

Abstract In structured light geometric reconstruction, due to the complexity of shooting methods and scene lighting conditions, the resulting images may be lack of image details due to uneven light. For this reason, the article proposes a Retinex algorithm with colour restoration and colour saturation correction strategy based on HSV colour space transformation based on artificial intelligence technology. Then distinguish whether it is a bright area according to the threshold value, and modify the insufficient transmittance estimation of the bright area. Finally, the intensity component and saturation value are restored in the HIS colour space, and the histogram is used to stretch the intensity component.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2730
Author(s):  
Barbara Kucharczyková ◽  
Dalibor Kocáb ◽  
Petr Daněk ◽  
Ivailo Terzijski

This paper focuses on the experimental determination of the shrinkage process in Self-Compacting High-Performance Concrete (SCC HPC) exposed to dry air and autogenous conditions. Special molds with dimensions of 100 mm × 60 mm × 1000 mm and 50 mm × 50 mm × 300 mm equipped with one movable head are used for the measurement. The main aim of this study is to compare the shrinkage curves of SCC HPC, which were obtained by using different measurement devices and for specimens of different sizes. In addition, two different times t0 are considered for the data evaluation to investigate the influence of this factor on the absolute value of shrinkage. In the first case, t0 is the time of the start of measurement, in the second case, t0 is the setting time. The early-shrinkage (48 h) is continuously measured using inductive sensors leant against the movable head and with strain gauges embedded inside the test specimen. To monitor the long term shrinkage, the specimens are equipped with special markers, embedded into the specimens’ upper surface or ends. These markers serve as measurement bases for the measurement using mechanical strain gauges. The test specimens are demolded after 48 h and the long term shrinkage is monitored using the embedded strain gauges (inside the specimens) and mechanical strain gauges that are placed, in regular intervals, onto the markers embedded into the specimens’ surface or ends. The results show that both types of measurement equipment give a similar result in the case of early age measurement, especially for the specimens cured under autogenous conditions. However, the early age and especially long term measurement are influenced by the position of the measurement sensors, particularly in the case of specimens cured under dry air conditions. It was proven that the time t0 have a fundamental influence on the final values of the shrinkage of investigated SCC HPC and have a significant impact on the conclusions on the size effect.


RSC Advances ◽  
2018 ◽  
Vol 8 (19) ◽  
pp. 10673-10679 ◽  
Author(s):  
Ashraf A. Mohamed ◽  
Ahmed A. Shalaby ◽  
Abdelnaby M. Salem

Digital imaging devices can be promising, sensitive, and cost-effective chemical sensors for resource-limited settings and locally deprived communities.


2021 ◽  
Author(s):  
P. Christian Simo ◽  
Florian Laible ◽  
Anke Horneber ◽  
Claus J Burkhardt ◽  
Monika Fleischer

Abstract Surface-enhanced Raman scattering (SERS) with pyramidal nanostructures increases the signal of Raman active analytes, since hotspots form at the edges and tip of a nano-pyramid under illumination. 2D hexagonal arrays of pyramidal nanostructures with a quadratic base are fabricated through cost-effective nano-sphere lithography and transferred onto elastomeric polydimethylsiloxane (PDMS). By making use of the {111} crystal plane of a silicon (100) wafer, an inverted pyramidal array is etched, which serves as the complementary negative for the gold nanostructures. Either a continuous gold thin-film with protruding pyramids or separate isolated nano-pyramids are produced. Three main fabrication strategies are presented, in which a linker molecule between the PDMS and the gold is mandatory to increase the weak Au-PDMS adhesion. 3-Mercaptopropyltriethoxysilane (MPTS) is able to bind to both PDMS and to the gold structures, thus strongly increasing stability under mechanical strain. The SERS enhancement is verified by Raman mapping of 4-mercaptobenzoic acid (4-MBA) molecules. Fabrication on a flexible substrate paves the way for future applications on curved surfaces or insitu tunable resonances.


Author(s):  
Martin Tabakov

This chapter presents a methodology for an image enhancement process of computed tomography perfusion images by means of partition generated with appropriately defined fuzzy relation. The proposed image processing is used to improve the radiological analysis of the brain perfusion. Colour image segmentation is a process of dividing the pixels of an image in several homogenously- coloured and topologically connected groups, called regions. As the concept of homogeneity in a colour space is imprecise, a measure of dependency between the elements of such a space is introduced. The proposed measure is based on a pixel metric defined in the HSV colour space. By this measure a fuzzy similarity relation is defined, which next is used to introduce a clustering method that generates a partition, and so a segmentation. The achieved segmentation results are used to enhance the considered computed tomography perfusion images with the purpose of improving the corresponding radiological recognition.


2013 ◽  
Vol 8 (7) ◽  
Author(s):  
Zhong Qu ◽  
Lidan Lin ◽  
Tengfei Gao ◽  
Yongkun Wang

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mostafa Elsaadany ◽  
Matthew Harris ◽  
Eda Yildirim-Ayan

It is crucial to replicate the micromechanical milieu of native tissues to achieve efficacious tissue engineering and regenerative therapy. In this study, we introduced an innovative loading platform, EQUicycler, that utilizes a simple, yet effective, and well-controlled mechanism to apply physiologically relevant homogenous mechanical equiaxial strain on three-dimensional cell-embedded tissue scaffolds. The design of EQUicycler ensured elimination of gripping effects through the use of biologically compatible silicone posts for direct transfer of the mechanical load to the scaffolds. Finite Element Modeling (FEM) was created to understand and to quantify how much applied global strain was transferred from the loading mechanism to the tissue constructs. In vitro studies were conducted on various cell lines associated with tissues exposed to equiaxial mechanical loading in their native environment. In vitro results demonstrated that EQUicycler was effective in maintaining and promoting the viability of different musculoskeletal cell lines and upregulating early differentiation of osteoprogenitor cells. By utilizing EQUicycler, collagen fibers of the constructs were actively remodeled. Residing cells within the collagen construct elongated and aligned with strain direction upon mechanical loading. EQUicycler can provide an efficient and cost-effective tool to conduct mechanistic studies for tissue engineered constructs designed for tissue systems under mechanical loading in vivo.


Sign in / Sign up

Export Citation Format

Share Document