Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries

2017 ◽  
Vol 46 (23) ◽  
pp. 7176-7190 ◽  
Author(s):  
Wenyu Long ◽  
Baizeng Fang ◽  
Anna Ignaszak ◽  
Zhuangzhi Wu ◽  
Yan-Jie Wang ◽  
...  

This review focuses on the derivation of nanostructured carbons and their composite materials from biomass materials for lithium ion battery anodes.

Author(s):  
Dr. Pratap Patil ◽  
Amey Mhaskar ◽  
Gauri Kalyankar ◽  
Devanshi Garg

New green energy resources are substitutes for conventional sources of energy. Conventional sources of energy are a threat to the environment. Scrapping these out with bamboo-based batteries. We are working on the principle of green synthesis wherein non-toxic and biosafe agents are used to provide ingenious solutions to complex problems. A study of various bamboo-based lithium-ion battery anode materials has been attempted through the characterizations. The purpose of this work is to give collective access of the different attempts for the users.


RSC Advances ◽  
2015 ◽  
Vol 5 (37) ◽  
pp. 28864-28869 ◽  
Author(s):  
Yuan Xu ◽  
Jingdong Feng ◽  
Xuecheng Chen ◽  
Krzysztof Kierzek ◽  
Wenbin Liu ◽  
...  

A simple, effective and reproducible method has been carried out for synthesis of CNT-Fe2O3 and CNT-Fe3O4@C beaded structures for lithium ion battery.


CrystEngComm ◽  
2018 ◽  
Vol 20 (22) ◽  
pp. 3043-3048 ◽  
Author(s):  
Lingyu Zhang ◽  
Zhigang Gao ◽  
Haiming Xie ◽  
Chungang Wang ◽  
Lu Li ◽  
...  

A facile, green, mild and one-step conventional heating method was developed to synthesize monodisperse Sn-doped Fe2O3 nanoclusters with a novel spindle-like 3D architecture as anode materials for lithium-ion batteries.


Nanoscale ◽  
2019 ◽  
Vol 11 (41) ◽  
pp. 19086-19104 ◽  
Author(s):  
Yaguang Zhang ◽  
Ning Du ◽  
Deren Yang

The solid electrolyte interface (SEI) is a passivation layer formed on the surface of lithium-ion battery (LIB) anode materials produced by electrolyte decomposition.


Nanoscale ◽  
2020 ◽  
Vol 12 (24) ◽  
pp. 12985-12992
Author(s):  
Shuaiwei Wang ◽  
Zhilong Peng ◽  
Daining Fang ◽  
Shaohua Chen

A Dirac nodal-ring semimetal made of cross-linked graphene networks for use as an anode material in lithium ion batteries.


2019 ◽  
Vol 7 (5) ◽  
pp. 2165-2171 ◽  
Author(s):  
Xingshuai Lv ◽  
Wei Wei ◽  
Baibiao Huang ◽  
Ying Dai

Siligraphenes including g-SiC2 and g-SiC3 can be promising candidates as anode materials for lithium-ion batteries.


2019 ◽  
Vol 48 (12) ◽  
pp. 4058-4066 ◽  
Author(s):  
Zhengxin Ren ◽  
Die Hu ◽  
Xiannan Zhang ◽  
Dan Liu ◽  
Cheng Wang

Hierarchical porous hollow FeFe(CN)6 nanospheres were synthesized via a facile anisotropic chemical etching route and integrated with I-doped graphene (IG) to form FeFe(CN)6@IG composites, which were used as anode materials for the lithium-ion battery (LIB) and exhibited high specific capacities, excellent rate properties, and superior cycling stabilities.


2011 ◽  
Vol 335-336 ◽  
pp. 218-221
Author(s):  
Ting Kai Zhao ◽  
Guang Ming Li ◽  
Le Hao Liu ◽  
Yong Ning Liu ◽  
Tie Hu Li

The electrochemical property of molybdenum disulphide (MoS2) as anode materials for lithium ion batteries was studied using two-electrode Li-ion cell. The first reversible capacity of MoS2 treated by using ball milling and doped graphite was 617mAhg-1 and 506mAhg-1 respectively. But the reversible capacity of pristine MoS2 was 661mAhg-1. The results indicated that the processes of ball milling and doped graphite of MoS2 can not widely enhance the reversible capacity.


RSC Advances ◽  
2015 ◽  
Vol 5 (44) ◽  
pp. 34566-34571 ◽  
Author(s):  
Huili Cao ◽  
Xinzhen Wang ◽  
Hongbo Gu ◽  
Jiurong Liu ◽  
Liqiang Luan ◽  
...  

Carbon coated MnO octahedra with narrow size distribution and good dispersity have been fabricated and applied as lithium ion battery anode materials.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6950
Author(s):  
Seokwon Lee ◽  
Seokhun Kwon ◽  
Kangmin Kim ◽  
Hyunil Kang ◽  
Jang Myoun Ko ◽  
...  

Carbon nanowall (CNW) and carbon nanotube (CNT) were prepared as anode materials of lithium-ion batteries. To fabricate a lithium-ion battery, copper (Cu) foil was cleaned using an ultrasonic cleaner in a solvent such as trichloroethylene (TCE) and used as a substrate. CNW and CNT were synthesized on Cu foil using plasma-enhanced chemical vapor deposition (PECVD) and water dispersion, respectively. CNW and CNT were used as anode materials for the lithium-ion battery, while lithium hexafluorophosphate (LiPF6) was used as an electrolyte to fabricate another lithium-ion battery. For the structural analysis of CNW and CNT, field emission scanning electron microscope (FE-SEM) and Raman spectroscopy analysis were performed. The Raman analysis showed that the carbon nanotube in composite material can compensate for the defects of the carbon nanowall. Cyclic voltammetry (CV) was employed for the electrochemical properties of lithium-ion batteries, fabricated by CNW and CNT, respectively. The specific capacity of CNW and CNT were calculated as 62.4 mAh/g and 49.54 mAh/g. The composite material with CNW and CNT having a specific capacity measured at 64.94 mAh/g, delivered the optimal performance.


Sign in / Sign up

Export Citation Format

Share Document