scholarly journals Preparation of Carbon Nanowall and Carbon Nanotube for Anode Material of Lithium-Ion Battery

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6950
Author(s):  
Seokwon Lee ◽  
Seokhun Kwon ◽  
Kangmin Kim ◽  
Hyunil Kang ◽  
Jang Myoun Ko ◽  
...  

Carbon nanowall (CNW) and carbon nanotube (CNT) were prepared as anode materials of lithium-ion batteries. To fabricate a lithium-ion battery, copper (Cu) foil was cleaned using an ultrasonic cleaner in a solvent such as trichloroethylene (TCE) and used as a substrate. CNW and CNT were synthesized on Cu foil using plasma-enhanced chemical vapor deposition (PECVD) and water dispersion, respectively. CNW and CNT were used as anode materials for the lithium-ion battery, while lithium hexafluorophosphate (LiPF6) was used as an electrolyte to fabricate another lithium-ion battery. For the structural analysis of CNW and CNT, field emission scanning electron microscope (FE-SEM) and Raman spectroscopy analysis were performed. The Raman analysis showed that the carbon nanotube in composite material can compensate for the defects of the carbon nanowall. Cyclic voltammetry (CV) was employed for the electrochemical properties of lithium-ion batteries, fabricated by CNW and CNT, respectively. The specific capacity of CNW and CNT were calculated as 62.4 mAh/g and 49.54 mAh/g. The composite material with CNW and CNT having a specific capacity measured at 64.94 mAh/g, delivered the optimal performance.

Nanoscale ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 225-231 ◽  
Author(s):  
Wenpei Kang ◽  
Yongbing Tang ◽  
Wenyue Li ◽  
Xia Yang ◽  
Hongtao Xue ◽  
...  

NiMn2O4/C hierarchical tremella-like nanostructures are facilely prepared and show an ultra-high specific capacity even at high current density as anode materials of lithium ion batteries.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chuen-Chang Lin ◽  
You-Lun Shen ◽  
An-Na Wu

Carbon nanotubes/graphene composites are directly grown on nickel foil without additional catalysts by chemical vapor deposition (CVD). Next, the cobalt is deposited on carbon nanotubes/graphene composites by radio frequency (RF) sputtering with different power levels and time periods. Then, the cobalt is transformed into cobalt oxide by annealing. A longer time period of sputtering leads to higher specific capacity. Furthermore, the electrochemical stability of cobalt oxide/carbon nanotubes/graphene composites is higher than that of cobalt oxide.


NANO ◽  
2018 ◽  
Vol 13 (09) ◽  
pp. 1850103 ◽  
Author(s):  
Xu Chen ◽  
Chunxin Yu ◽  
Xiaojiao Guo ◽  
Qinsong Bi ◽  
Muhammad Sajjad ◽  
...  

Novelty Cu2O multi-branched nanowires and nanoparticles with size ranging from [Formula: see text]15[Formula: see text]nm to [Formula: see text]60[Formula: see text]nm have been synthesized by one-step hydrothermal process. These Cu2O nanostructures when used as anode materials for lithium-ion batteries exhibit the excellent electrochemical cycling stability and reduced polarization during the repeated charge/discharge process. The specific capacity of the Cu2O nanoparticles, multi-branched nanowires and microscale are maintained at 201.2[Formula: see text]mAh/g, 259.6[Formula: see text]mAh/g and 127.4[Formula: see text]mAh/g, respectively, under the current density of 0.1[Formula: see text]A/g after 50 cycles. The enhanced electrochemical performance of the Cu2O nanostructures compared with microscale counterpart can be attributed to the larger contact area between active Cu2O nanostructures/electrolyte interface, shorter diffusion length of Li[Formula: see text] within nanostructures and the improved stress release upon lithiation/delithiation.


Author(s):  
Dr. Pratap Patil ◽  
Amey Mhaskar ◽  
Gauri Kalyankar ◽  
Devanshi Garg

New green energy resources are substitutes for conventional sources of energy. Conventional sources of energy are a threat to the environment. Scrapping these out with bamboo-based batteries. We are working on the principle of green synthesis wherein non-toxic and biosafe agents are used to provide ingenious solutions to complex problems. A study of various bamboo-based lithium-ion battery anode materials has been attempted through the characterizations. The purpose of this work is to give collective access of the different attempts for the users.


RSC Advances ◽  
2015 ◽  
Vol 5 (37) ◽  
pp. 28864-28869 ◽  
Author(s):  
Yuan Xu ◽  
Jingdong Feng ◽  
Xuecheng Chen ◽  
Krzysztof Kierzek ◽  
Wenbin Liu ◽  
...  

A simple, effective and reproducible method has been carried out for synthesis of CNT-Fe2O3 and CNT-Fe3O4@C beaded structures for lithium ion battery.


RSC Advances ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 6660-6666 ◽  
Author(s):  
Jun Wang ◽  
Shengli Li ◽  
Yi Zhao ◽  
Juan Shi ◽  
Lili Lv ◽  
...  

With a high specific capacity (4200 mA h g−1), silicon based materials have become the most promising anode materials in lithium-ions batteries.


CrystEngComm ◽  
2018 ◽  
Vol 20 (22) ◽  
pp. 3043-3048 ◽  
Author(s):  
Lingyu Zhang ◽  
Zhigang Gao ◽  
Haiming Xie ◽  
Chungang Wang ◽  
Lu Li ◽  
...  

A facile, green, mild and one-step conventional heating method was developed to synthesize monodisperse Sn-doped Fe2O3 nanoclusters with a novel spindle-like 3D architecture as anode materials for lithium-ion batteries.


Nanoscale ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 3159-3165 ◽  
Author(s):  
Yucheng Dong ◽  
Shiliu Yang ◽  
Zhenyu Zhang ◽  
Jong-Min Lee ◽  
Juan Antonio Zapien

Antimony sulfide can be used as a promising anode material for lithium ion batteries due to its high theoretical specific capacity derived from sequential conversion and alloying lithium insertion reactions.


Nanoscale ◽  
2019 ◽  
Vol 11 (41) ◽  
pp. 19086-19104 ◽  
Author(s):  
Yaguang Zhang ◽  
Ning Du ◽  
Deren Yang

The solid electrolyte interface (SEI) is a passivation layer formed on the surface of lithium-ion battery (LIB) anode materials produced by electrolyte decomposition.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.


Sign in / Sign up

Export Citation Format

Share Document