scholarly journals The synthesis of a pyridine-N-oxide isophthalamide rotaxane utilizing supplementary amide hydrogen bond interactions

2016 ◽  
Vol 14 (33) ◽  
pp. 7972-7981 ◽  
Author(s):  
Nicholas H. Evans ◽  
Charles E. Gell ◽  
Michael J. G. Peach

A pyridine-N-oxide containing rotaxane has been prepared in 32% yield. The role of macrocycle structure in successful pseudo-rotaxane formation has been rationalised by a combination of NMR spectroscopy, X-ray crystallography and computational modelling.

Author(s):  
Maryam Taherzadeh ◽  
Mehrdad Pourayoubi ◽  
Banafsheh Vahdani Alviri ◽  
Samad Shoghpour Bayraq ◽  
Maral Ariani ◽  
...  

For [C(O)NH](N)2P(O)-based structures, the magnitude of the differences in the N—H...O, H...O=P and H...O=C angles has been evaluated when the N—H bond lengths, determined by X-ray diffraction, were compared to the neutron normalized values and the maximum percentage difference was obtained, i.e. about 3% for the angle even if the N—H bond lengths have a difference of about 30% (0.7 Å for the X-ray and 1.03 Å for the neutron-normalized value). The symmetries of the crystals are discussed with respect to the symmetry of the molecules, as well as to the symmetry of hydrogen-bonded motifs, and the role of the most directional hydrogen bond in raising the probability of obtaining centrosymmetric crystal structures is investigated. The work was performed by considering nine new X-ray crystal structures and 204 analogous structures retrieved from the Cambridge Structural Database.


2015 ◽  
Vol 71 (9) ◽  
pp. 839-843 ◽  
Author(s):  
Serap Köktaş Koca ◽  
Resul Sevinçek ◽  
Özlem Akgül ◽  
Muhittin Aygün

Theortho-,para- andmeta-chloro-substitutedN-chlorophenyl-2-phthalimidoethanesulfonamide derivatives, C16H13ClN2O4S, have been structurally characterized by single-crystal X-ray crystallography.N-(2-Chlorophenyl)-2-phthalimidoethanesulfonamide, (I), has orthorhombic (P212121) symmetry,N-(4-chlorophenyl)-2-phthalimidoethanesulfonamide, (II), has triclinic (P\overline{1}) symmetry andN-(3-chlorophenyl)-2-phthalimidoethanesulfonamide, (III), has monoclinic (P21/c) symmetry. The molecules of (I)–(III) are regioisomers which have crystallized in different space groups as a result of the differing intra- and intermolecular hydrogen-bond interactions which are present in each structure. Compounds (I) and (II) are stabilized by N—H...O and C—H...O hydrogen bonds, while (III) is stabilized by N—H...O, C—H...O and C—H...Cl hydrogen-bond interactions. The structure of (II) also displays π–π stacking interactions between the isoindole and benzene rings. All three structures are of interest with respect to their biological activities and have been studied as part of a programme to develop anticonvulsant drugs for the treatment of epilepsy.


1985 ◽  
Vol 63 (11) ◽  
pp. 2915-2921 ◽  
Author(s):  
Ian M. Piper ◽  
David B. MacLean ◽  
Romolo Faggiani ◽  
Colin J. L. Lock ◽  
Walter A. Szarek

The products of a Pictet–Spengler condensation of tryptamine and of histamine with 2,5-anhydro-D-mannose have been studied by X-ray crystallography to establish their absolute configuration. 1(S)-(α-D-Arabinofuranosyl)-1,2,3,4-tetrahydro-β-carboline (1), C16H20N20O4, is monoclinic, P21 (No. 4), with cell dimensions a = 13.091(4), b = 5.365(1), c = 11.323(3) Å, β = 115.78(2)°, and Z = 2. 4-(α-D-Arabinofuranosyl)imidazo[4,5-c]-4,5,6,7-tetrahydropyridine (3), C11H17N3O4, is orthorhombic, P212121 (No. 19), with cell dimensions a = 8.118(2), b = 13.715(4), c = 10.963(3) Å, and Z = 4. The structures were determined by direct methods and refined to R1 = 0.0514, R2 = 0.0642 for 3210 reflections in the case of 1, and to R1 = 0.0312, R2 = 0.0335 for 1569 reflections in the case of 3. Bond lengths and angles within both molecules are normal and agree well with those observed in related structures. In 3 the base and sugar adopt a syn arrangement, which is maintained by an internal hydrogen bond between O(2′) and N(3). The sugar adopts a normal 2T3 twist conformation. The sugar has the opposite anti arrangement in the β-carboline 1 and the conformation of the sugar is unusual; it is close to an envelope conformation with O(4′) being the atom out of the plane. This conformation is caused by a strong intermolecular hydrogen bond from O(5′) in a symmetry-related molecule to O(4′). Both compounds are held together in the crystal by extensive hydrogen-bonding networks. The conformations of the compounds in solution have been investigated by 1H nmr spectroscopy, and the results obtained were compared with those obtained by X-ray crystallography for 1 and 3.


2005 ◽  
Vol 60 (10) ◽  
pp. 1049-1053 ◽  
Author(s):  
Zeanab Talaei ◽  
Ali Morsali ◽  
Ali R. Mahjoub

Two new ZnII(phen)2 complexes with trichloroacetate and acetate anions, [Zn(phen)2(CCl3COO)- (H2O)](ClO4) and [Zn(phen)2(CH3COO)](ClO4), have been synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopy. The single crystal X-ray data of these compounds show the Zn atoms to have six-coordinate geometry. From IR spectra and X-ray crystallography it is established that the coordination of the COO− group is different for trichloroacetate and acetate. The former acts as a monodentate whereas the latter acts as a bidentate ligand.


1980 ◽  
Vol 58 (17) ◽  
pp. 1821-1828 ◽  
Author(s):  
Gary D. Fallon ◽  
Bryan M. Gatehouse ◽  
Allan Pring ◽  
Ian D. Rae ◽  
Josephine A. Weigold

Ethyl-3-amino-2-benzoyl-2-butenoate crystallizes from pentane as either the E (mp 82–84 °C) or the Z-isomer (mp 95.5–96.5 °C). The E isomer is less stable, and changes spontaneously into the Z, which bas been identified by X-ray crystallography. The structure is characterised by an N–H/ester CO hydrogen bond and a very long C2—C3 bond (1.39 Å). Nuclear magnetic resonance methods have been used to measure the rate of [Formula: see text] isomerization at several temperatures, leading to the estimate that the free energy of activation at 268 K is 56 ± 8 kJ.


Sign in / Sign up

Export Citation Format

Share Document