Aqueous lubrication of poly(N-hydroxyethyl acrylamide) brushes: a strategy for their enhanced load bearing capacity and wear resistance

RSC Advances ◽  
2016 ◽  
Vol 6 (26) ◽  
pp. 21961-21968 ◽  
Author(s):  
Jingjing Zhang ◽  
Shengwei Xiao ◽  
Mingxue Shen ◽  
Li Sun ◽  
Feng Chen ◽  
...  

Poly(N-hydroxylethyl acrylamide) brushes show a very low aqueous surface friction coefficient. Crosslinking of these brushes increases the surface friction coefficient, but can significantly enhance their load bearing capacity and wear resistance.

Friction ◽  
2021 ◽  
Author(s):  
Luyao Gao ◽  
Xiaoduo Zhao ◽  
Shuanhong Ma ◽  
Zhengfeng Ma ◽  
Meirong Cai ◽  
...  

AbstractSilicone elastomers-based materials have been extensively involved in the field of biomedical devices, while their use is extremely restricted due to the poor surface lubricity and inherent hydrophobicity. This paper describes a novel strategy for generating a robust layered soft matter lubrication coating on the surface of the polydimethylsiloxane (PDMS) silicone elastomer, by entangling thick polyzwitterionic polyelectrolyte brush of poly (sulfobetaine methacrylate) (PSBMA) into the sub-surface of the initiator-embedded stiff hydrogel coating layer of P(AAm-co-AA-co-HEMA-Br)/Fe, to achieve a unified low friction and high load-bearing properties. Meanwhile, the stiff hydrogel layer with controllable thickness is covalently anchored on the surface of PDMS by adding iron powder to provide catalytic sites through surface catalytically initiated radical polymerization (SCIRP) method and provides high load-bearing capacity, while the topmost brush/hydrogel composite layer is highly effective for aqueous lubrication. Their synergy effects are capable of attaining low friction coefficient (COFs) under wide range of loaded condition in water environment with steel ball as sliding pair. Furthermore, the influence of mechanical modulus of the stiff hydrogel layer on the lubrication performance of layered coating is investigated, for which the COF is the lowest only when the modulus of the stiff hydrogel layer well matches the PDMS substrate. Surprisingly, the COF of the modified PDMS could remain low friction (COF < 0.05) stably after encountering 50,000 sliding cycles under 10 N load. Finally, the surface wear characterizations prove the robustness of the layered lubricating coating. This work provides a new route for engineering lubricious silicon elastomer with low friction, high load-bearing capacity, and considerable durability.


2015 ◽  
Vol 828-829 ◽  
pp. 334-339 ◽  
Author(s):  
Anja Buchwalder ◽  
Erik Zaulig ◽  
Rolf Zenker ◽  
Jürgen Liebich

PVD hard coating is a well-known surface treatment technology for steels to improve wear resistance and, to some extent, corrosion resistance. In principle, hard coating can be carried out for Al alloys, but due to the natural oxide layer and the insufficient load-bearing capacity of the soft base material, the application of this technology for wear protection of components is not regarded as being particularly promising. The research activities described in this paper focused on electron beam (EB) surface alloying with a Co-based additive, and the influence of two different hardness levels (270HV0.1 and 390HV0.1) on the improvement of the local load-bearing capacity of Al alloys with thin PVD hard coatings. A further focus of this research was on the material-specific aspects of the coating deposition. Compared to steels, the hard coated surface of Al alloys is rougher and the measured adhesion of the coating is significantly lower. For this purpose, different technological PVD parameters (e.g. Ti interlayer, deposition temperature, and time) were adapted to optimize the coating properties – especially adhesion. The paper deals with comparative studies of single (PVD hard coating of Al base material) and duplex treatment (EB alloying of Al base material and subsequent PVD hard coating) by means of improvement of the coating and compound hardness, friction and wear behavior (pin-on-disc test), as well as the corrosion resistance (potentiodynamic measurements in 0.05M H2SO4). While the level of improvement in wear resistance as a result of the duplex treatments strongly depended on the adhesion of the thin coatings, the corrosion behavior was strongly influenced by the PVD deposition process and coating thickness.


2020 ◽  
Vol 62 (1) ◽  
pp. 55-60
Author(s):  
Per Heyser ◽  
Vadim Sartisson ◽  
Gerson Meschut ◽  
Marcel Droß ◽  
Klaus Dröder

2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


Sign in / Sign up

Export Citation Format

Share Document