Improving the thermal stability, electroactive β phase crystallization and dielectric constant of NiO nanoparticle/C–NiO nanocomposite embedded flexible poly(vinylidene fluoride) thin films

RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 26288-26299 ◽  
Author(s):  
Pradip Thakur ◽  
Arpan Kool ◽  
Nur Amin Hoque ◽  
Biswajoy Bagchi ◽  
Swagata Roy ◽  
...  

Increasing β phase nucleation and formation of microcapacitors in flexible high dielectric NiO NPs/C–NiO NCs modified PVDF films.

RSC Advances ◽  
2015 ◽  
Vol 5 (36) ◽  
pp. 28487-28496 ◽  
Author(s):  
Pradip Thakur ◽  
Arpan Kool ◽  
Biswajoy Bagchi ◽  
Nur Amin Hoque ◽  
Sukhen Das ◽  
...  

Electroactive β phase nucleation in cerium/yttrium nitrate hexahydrate salt modified PVDF thin filmsviaformation of hydrogen bonds.


RSC Advances ◽  
2015 ◽  
Vol 5 (77) ◽  
pp. 62819-62827 ◽  
Author(s):  
Pradip Thakur ◽  
Arpan Kool ◽  
Biswajoy Bagchi ◽  
Nur Amin Hoque ◽  
Sukhen Das ◽  
...  

Electroactive β phase nucleation mechanism and promising dielectric properties of WO3·H2O nanoparticle loaded PVDF thin films.


2017 ◽  
Vol 5 (46) ◽  
pp. 12121-12133 ◽  
Author(s):  
Nirmal Maity ◽  
Amit Mandal ◽  
Arun K. Nandi

Aniline in situ polymerized within exfoliated molybdenum disulfide produces MoS2–PANI with raspberry morphology, showing good dispersion into poly(vinylidene fluoride)(PVDF) and produces 86% β-phase PVDF yielding dielectric constant 586 at 102 Hz.


2015 ◽  
Vol 17 (35) ◽  
pp. 22784-22798 ◽  
Author(s):  
Epsita Kar ◽  
Navonil Bose ◽  
Sukhen Das ◽  
Nillohit Mukherjee ◽  
Sampad Mukherjee

Poly(vinylidene fluoride) (PVDF) nanocomposites are recently gaining importance due to their unique dielectric and electroactive responses.


2014 ◽  
Vol 99 ◽  
pp. 149-159 ◽  
Author(s):  
Pradip Thakur ◽  
Arpan Kool ◽  
Biswajoy Bagchi ◽  
Sukhen Das ◽  
Papiya Nandy

2012 ◽  
Vol 496 ◽  
pp. 263-267
Author(s):  
Rui Li ◽  
Jian Zhong Pei ◽  
Yan Wei Li ◽  
Xin Shi ◽  
Qun Le Du

A novel all-polymeric material with high dielectric constant (k) has been developed by blending poly (vinylidene fluoride) (PVDF) with polyamide-6 (PA6). The dependence of the dielectric properties on frequency and polymer volume fraction was investigated. When the volume fraction of PA6 is 20%, the dielectric property is better than others. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. The XRD demonstrate that the PA6 and PVDF affect the crystalline behavior of each component. Furthermore, the stable dielectric constants of the blends could be tuned by adjusting the content of the polymers. The created high-k all-polymeric blends represent a novel type of material that are simple technology and easy to process, and is of relatively high dielectric constant, applications as flexible electronics.


Sign in / Sign up

Export Citation Format

Share Document