High dielectric poly(vinylidene fluoride) nanocomposite films with MoS2 using polyaniline interlinker via interfacial interaction

2017 ◽  
Vol 5 (46) ◽  
pp. 12121-12133 ◽  
Author(s):  
Nirmal Maity ◽  
Amit Mandal ◽  
Arun K. Nandi

Aniline in situ polymerized within exfoliated molybdenum disulfide produces MoS2–PANI with raspberry morphology, showing good dispersion into poly(vinylidene fluoride)(PVDF) and produces 86% β-phase PVDF yielding dielectric constant 586 at 102 Hz.

RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 26288-26299 ◽  
Author(s):  
Pradip Thakur ◽  
Arpan Kool ◽  
Nur Amin Hoque ◽  
Biswajoy Bagchi ◽  
Swagata Roy ◽  
...  

Increasing β phase nucleation and formation of microcapacitors in flexible high dielectric NiO NPs/C–NiO NCs modified PVDF films.


2018 ◽  
Vol 6 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Jianwen Chen ◽  
Xiucai Wang ◽  
Xinmei Yu ◽  
Lingmin Yao ◽  
Zhikui Duan ◽  
...  

Nanocomposite films with a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates exhibit a high dielectric constant of 140 and relatively low dielectric loss of 0.05 at 1 kHz.


2021 ◽  
pp. 095400832110440
Author(s):  
Mingyun Peng ◽  
Ke Li ◽  
Bingliang Huang ◽  
Jie Cheng

A series of three-phase composite films with different filler contents were prepared by in-situ polymerization. The composite films comprise polyimide (PI), poly (vinylidene fluoride) (PVDF), and titanium dioxide (TiO2). Compared with PI/TiO2 composite films, the PI/TiO2-PVDF composite films not only get a significant increase in dielectric constant, but also own better mechanical properties. Our results show that with the loading of 50wt% PVDF particles, the dielectric constant of PI/TiO2-PVDF composite films increased from 6.5 to 18.14 at 1 MHz and room temperature, while the tensile strength of PI/TiO2-PVDF composite films increased from 45 to 72 MPa. In addition, the films maintain a low loss tangent of about 0.02. PI/PVDF composite films were also prepared. It was found that dielectric constant of PI/PVDF composite was significantly lower than that of PI/TiO2-PVDF composite films when the loading of PVDF is 50wt%.


2020 ◽  
Vol 44 (34) ◽  
pp. 14578-14591
Author(s):  
Akash M. Chandran ◽  
S. Varun ◽  
Prasanna Kumar S. Mural

In the present study, we report a simple fabrication method for poly(vinylidene fluoride) PVDF/MWCNT flexible nanocomposite films with a boosted electroactive phase that enhanced the dielectric and piezoelectric properties.


2015 ◽  
Vol 17 (35) ◽  
pp. 22784-22798 ◽  
Author(s):  
Epsita Kar ◽  
Navonil Bose ◽  
Sukhen Das ◽  
Nillohit Mukherjee ◽  
Sampad Mukherjee

Poly(vinylidene fluoride) (PVDF) nanocomposites are recently gaining importance due to their unique dielectric and electroactive responses.


2020 ◽  
Vol 10 (10) ◽  
pp. 3493
Author(s):  
Minjung Kim ◽  
Vignesh Krishnamoorthi Kaliannagounder ◽  
Afeesh Rajan Unnithan ◽  
Chan Hee Park ◽  
Cheol Sang Kim ◽  
...  

Energy harvesting technologies have found significant importance over the past decades due to the increasing demand of energy and self-powered design of electronic and implantable devices. Herein, we demonstrate the design and application of in situ poled highly flexible piezoelectric poly vinylidene fluoride (PVDF) graphene oxide (GO) hybrid nanofibers in aligned mode for multifaceted applications from locomotion sensors to self-powered motion monitoring. Here we exploited the simplest and most versatile method, called electrospinning, to fabricate the in situ poled nanofibers by transforming non-polar α-phase of PVDF to polar β- phase structures for enhanced piezoelectricity under high bias voltage. The flexible piezoelectric device fabricated using the aligned mode generates an improved output voltage of 2.1 V at a uniform force of 12 N. The effective piezoelectric transduction exhibited by the proposed system was tested for its multiple efficacies as a locomotion detector, bio-e-skin, smart chairs and so on.


2012 ◽  
Vol 496 ◽  
pp. 263-267
Author(s):  
Rui Li ◽  
Jian Zhong Pei ◽  
Yan Wei Li ◽  
Xin Shi ◽  
Qun Le Du

A novel all-polymeric material with high dielectric constant (k) has been developed by blending poly (vinylidene fluoride) (PVDF) with polyamide-6 (PA6). The dependence of the dielectric properties on frequency and polymer volume fraction was investigated. When the volume fraction of PA6 is 20%, the dielectric property is better than others. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. The XRD demonstrate that the PA6 and PVDF affect the crystalline behavior of each component. Furthermore, the stable dielectric constants of the blends could be tuned by adjusting the content of the polymers. The created high-k all-polymeric blends represent a novel type of material that are simple technology and easy to process, and is of relatively high dielectric constant, applications as flexible electronics.


Sign in / Sign up

Export Citation Format

Share Document