good dispersion
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4116
Author(s):  
Omar Talal Bafakeeh ◽  
Walid Mahmoud Shewakh ◽  
Ahmed Abu-Oqail ◽  
Walaa Abd-Elaziem ◽  
Metwally Abdel Ghafaar ◽  
...  

The multiscale hybridization of ceramic nanoparticles incorporated into polymer matrices reinforced with hybrid fibers offers a new opportunity to develop high-performance, multifunctional composites, especially for applications in aeronautical structures. In this study, two different kinds of hybrid fibers were selected, woven carbon and glass fiber, while two different ceramic nanoparticles, alumina (Al2O3) and graphene nanoplatelets (GNPs), were chosen to incorporate into a polymer matrix (epoxy resin). To obtain good dispersion of additive nanoparticles within the resin matrix, the ultrasonication technique was implemented. The microstructure, XRD patterns, hardness, and tensile properties of the fabricated composites were investigated here. Microstructural characterization demonstrated a good dispersion of ceramic nanoparticles of Al2O3 and GNPs in the fabricated composites. The addition of GNPs/Al2O3 nanoparticles as additive reinforcements to the fiber-reinforced polymers (FRPs) induced a significant increase in the hardness and tensile strength. Generally, the FRPs with 3 wt.% nano-Al2O3 enhanced composites exhibit higher tensile strength as compared with all other sets of composites. Particularly, the tensile strength was improved from 133 MPa in the unreinforced specimen to 230 MPa in the reinforced specimen with 3 wt.% Al2O3. This can be attributed to the better distribution of nanoparticles in the resin polymer, which, in turn, induces proper stress transfer from the matrix to the fiber phase. The hybrid mode mechanism depends on the interaction among the mechanical properties of fiber, the physical and chemical evolution of resin, the bonding properties of the fiber/resin interface, and the service environment. Therefore, the hybrid mode of woven carbon and glass fibers at a volume fraction of 64% with additive nanoparticles of GNPs/Al2O3 within the resin was appropriate to produce aeronautical structures with extraordinary properties.


2021 ◽  
Vol 63 (11) ◽  
pp. 40-43
Author(s):  
Minh Hieu Nguyen ◽  
◽  
Binh Duong Le ◽  
Anh Tuan Mai ◽  
Thi Binh Nguyen ◽  
...  

Research and synthesis of photosensitive purpurin 18 (Pp-18) from nature is one of the topics that many research groups are interested in and developing. In this study, the authors defined some characteristics of Pp-18 synthesised from chlorophyll a - a substance isolated from Spirulina. The results showed that Pp-18 had good dispersion in acetone at 478.5 nm (R2=0.98285) and reached 98%. Fluorescence spectroscopy of Pp-18 in acetone was measured at a concentration of 70 ppm, wavelengths 365.39, 417.62, and 557.96 nm. The fluorescence lifetime of Pp-18 in acetone solution was 2.85 ns.


Inorganics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Anton Kasprzhitskii ◽  
Georgy Lazorenko ◽  
Alexander Kruglikov ◽  
Irina Kuchkina ◽  
Vadim Gorodov

Poly(lactic acid) (PLA)/palygorskite (Paly) nanocomposites were prepared using the melt compounding technique. Paly modified by 3-aminopropyltriethoxysilane (APTES) and vinyltrimethoxysilane (VTMS) was used as nanofiller for PLA with concentrations in the 1–7 wt% range. It has been found that the functionalization allows a covalent bond between the hydroxyl groups of the Paly and the PLA matrix, evidenced by the improvement in mechanical properties. Paly modification with VTMS has better properties compared with Pale modification with APTES. This indicates a better adhesion between the Paly-VTMS and PLA matrix, and a good dispersion of the nanofiller in the polymer matrix.


2021 ◽  
Author(s):  
Yi-Nan Zhang ◽  
Zheng Li ◽  
Suriguga Meng ◽  
Alideertu Dong ◽  
Ying-Wei Yang

Carboxylated leaning tower[6]arene sodium salts are used as an efficient stabiliser for the one-pot synthesis of silver nanoparticles. The resulting hybrid material with good dispersion, excellent stability and narrow size...


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 897-909
Author(s):  
Xiaozhen He ◽  
Ilkka Rytöluoto ◽  
Rafal Anyszka ◽  
Amirhossein Mahtabani ◽  
Minna Niittymäki ◽  
...  

Abstract Fumed silica-filled polypropylene (PP)-based nanodielectrics were studied in this work. To not only improve the dispersion of the silica but also introduce deep charge traps into the polymeric matrix, five types of modified silicas were manufactured with different surface modifications. The modified silica surfaces comprise an inner and a surface layer. The inner layer contains a polar urethane group for tailoring the charge trap properties of the PP/propylene–ethylene copolymer nanocomposites, whereas the surface layer consists of hydrocarbons (ethyl-, tert-butyl-, cyclopentyl-, phenyl-, or naphthalenyl moieties) in order to gain a good dispersion of the silica in the unpolar polymer blend. Scanning electron microscopic pictures proved that these tailored silicas show a much better dispersion than the unmodified one. Thermally stimulated depolarization current measurements revealed the ability of the silica to introduce deep charge traps with low trap density. The trap depth distribution depends on the type of the unpolar surface layer consisting of the different hydrocarbons. Among these five differently modified silicas, the introduction of the one with a surface layer consisting of tert-butyl moieties resulted in the lowest charge injection and the lowest charge current in the nanocomposite, proving good dielectric performance. Additionally, this silica exhibits good dispersion in the polymeric matrix, indicating a promising performance for nanodielectric application.


2020 ◽  
Vol 148 ◽  
pp. 106350 ◽  
Author(s):  
Chaoliang Gan ◽  
Ting Liang ◽  
Wen Li ◽  
Xiaoqiang Fan ◽  
Xia Li ◽  
...  

2020 ◽  
Vol 20 (7) ◽  
pp. 4327-4330
Author(s):  
Ye Sol Lim ◽  
Min-Jin Lee ◽  
Kyoung-Jin Lee ◽  
Sangjin Lee ◽  
Haejin Hwang

CeO2-promoted Ni/Al2O3 catalysts were fabricated by impregnation. The effects of the CeO2 promotion and impregnation order on the microstructural evolution and catalytic durability were investigated for methane steam reforming. The CeO2-promoter nanoparticles resulted in good dispersion and reduced particle size of Ni catalysts. The enhanced durability of CeO2-promoted Ni/Al2O3 catalysts might be associated with the depression of carbon deposition by the presence of CeO2-promoter nanoparticles.


Author(s):  
Hua-jie Liu ◽  
Zhou-wen Fang ◽  
Xin-zhi Zhou ◽  
Xiang-li Long

AbstractThe effect of competitive adsorption on the catalytic performance of H3PMo12O40@C catalyst for producing 2-nitro-4-methylsulfonylbenzoic acid (NMSBA) from the oxidation of 2-nitro-4- methylsulfonyltoluene (NMST) by oxygen in acetic acid has been investigated. Six kinds of acids were added into the impregnation solution as competitive adsorbates for phosphomolybdic acid in the preparation of H3PMo12O40@C catalyst. H2SO4, HCl, HNO3, CH3COOH and H2C2O4 are beneficial to improving the catalytic activity of the H3PMo12O40@C catalyst. The corresponding optimum impregnation concentrations for H2SO4, HCl, HNO3, CH3COOH and H2C2O4 are 0.4, 0.3, 0.3, 1.0 and 0.3 mol L−1, respectively. The addition of H3PO4 exerts a negative effect on the catalytic capability of H3PMo12O40@C catalyst. The results of TEM characterization show that good dispersion of H3PMo12O40 on the surface of the H3PMo12O40@C catalyst is beneficial to ameliorating the catalytic ability of H3PMo12O40@C catalyst in the production of NMSBA from NMST by oxygen in acetic acid. The results of NH3-TPD indicate that the acidity of the H3PMo12O40@C also favors the improvement of the catalytic capability of H3PMo12O40@C in the oxidation of NMST to NMSBA.


2020 ◽  
Vol 554 (1) ◽  
pp. 197-203
Author(s):  
Zhuangzhuang Guo ◽  
Liangliang Liu ◽  
Zhaoping Hou ◽  
Yongqiang Wang ◽  
Jun Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document