Synthesis and evaluation of a molecularly imprinted polymer with high-efficiency recognition for dibutyl phthalate based on Mn-doped ZnS quantum dots

RSC Advances ◽  
2016 ◽  
Vol 6 (59) ◽  
pp. 54615-54622 ◽  
Author(s):  
Tao Li ◽  
Zhikun Gao ◽  
Ningwei Wang ◽  
Zhiping Zhou ◽  
Wanzhen Xu ◽  
...  

Molecularly imprinted polymers with Mn-doped ZnS quantum dots were prepared using dibutyl phthalate as the template molecule, 3-aminopropyltriethoxysilane as the functional monomer and the tetraethoxysilane as the cross-linker.

RSC Advances ◽  
2017 ◽  
Vol 7 (81) ◽  
pp. 51632-51639 ◽  
Author(s):  
Wanzhen Xu ◽  
Tao Li ◽  
Weihong Huang ◽  
Yu Luan ◽  
Yanfei Yang ◽  
...  

In this work, magnetic quantum dots molecularly imprinted polymers were synthesized, which were based on ZnS and magnetic Fe3O4.


2012 ◽  
Vol 549 ◽  
pp. 340-343 ◽  
Author(s):  
Jun Feng Zhu ◽  
Guang Hua Zhang ◽  
Ting Shang ◽  
Wei Xiong

In this paper, using environmental hormone dibutyl phthalate (DBP) in the contaminated foods as the template molecule, methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate ester (EDMA) as cross linking agent, the molecularly imprinted polymer (MIP) was prepared on the silica surface. The MIP was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimeric analysis (TGA) and automated surface area analyzer. The property of adsorption was tested using static adsorption method in water phrase. The results of FTIR indicate that there are recognition groups in the microspheres after imprinting. TGA illustrates the silica gel surface has been coated with a layer of polymer after the synthesis reaction. And the MIP can bear the high temperature of 200 °C. The thickness of the imprinted polymer coated on silica gel surface is estimated via the pore size data is about 1. 5nm. The result of static adsorption experiment shows that the saturated adsorption capacity of the MIP was 8.940mg/g.


2022 ◽  
Author(s):  
Xue Chen ◽  
Jinyue Chai ◽  
Baodong Sun ◽  
Xue Yang ◽  
Feng Zhang ◽  
...  

In this study, the carbon-based Cu2+-immobilized metal-organic framework modified molecularly imprinted polymer (C@GI@Cu-MOFs@MIPs) adsorbent was prepared using bovine hemoglobin (BHb) as a template molecule with carbon spheres as carriers for...


2017 ◽  
Author(s):  
◽  
Silindile Senamile Zunngu

In this study, molecular modeling was used to investigate the intermolecular interactions between the functional monomer and ketoprofen which is an acidic pharmaceutical that possesses anti-inflammatory and analgesic activities. Ketoprofen is widely employed in medical care for treating musculoskeletal injury. This led to rational design of a molecularly imprinted polymer (MIP) that is selective to ketoprofen. Density functional theory (DFT) at B3LYP/6-31 level was used to investigate the intermolecular interaction between functional monomers and ketoprofen. Binding energy, ΔE, was used as an indication of the strength of the interaction that occurs between functional monomers and ketoprofen. 2-vinylpyridine (2-VP) as one of the functional monomers gave the lowest binding energy when compared to all the functional monomers investigated. Monomer-template interactions were further experimentally investigated using spectroscopic techniques such as Ultraviolet-visible and Fourier transform infrared (FTIR). A selective MIP for ketoprofen was synthesized using 2-vinylpyridine, ethylene glycol dimethacrylate, 1,1’-azobis(cyclohexanecarbonitrile), toluene/acetonitrile (9:1, v/v), and ketoprofen as a functional monomer, cross-linker, initiator, porogenic mixture, and template, respectively. The polymerization was performed at 60 °C for 16 h, and thereafter the temperature was increased to 80 °C for 24 h to achieve a solid monolith polymer. The non-imprinted polymer (NIP) was synthesized in a similar manner with the omission of ketoprofen. Characterization with thermogravimetric analysis (TGA) and powder X-ray diffraction (XRD) showed that the synthesized polymers were thermally stable and amorphous. Morphology of the particles were clearly visible, with MIP showing rough and irregular surface compared to NIP on the scanning electron microscopy (SEM). The characterization of the prominent functional groups on both MIP and NIP were performed using FTIR and nuclear magnetic resonance (NMR). The existence of hydroxyl was observed in the MIP; this was due to the presence of ketoprofen in the cavity. Prominent carbonyl group was an indication of the cross-linker present in both polymers. The synthesized MIP was applied as a selective sorbent in the solid-phase extraction of ketoprofen from the water. The extracted ketoprofen was monitored by high performance liquid chromatography (HPLC) coupled with UV/Vis detector. Several parameters were investigated for maximum recovery of ketoprofen from the spiked deionized water. The optimum method involved the conditioning of 14 mg MIP sorbent with 5 mL of methanol followed by equilibrating with 5 mL of deionized water adjusted to pH 2.5. Thereafter, 50 mL sample (pH 5) was loaded into the cartridge containing MIP sorbent followed by washing and eluting with 1% TEA/H2O and 100% methanol, respectively. Eluted compounds were quantified with HPLC. MIP was more selective to ketoprofen in the presence of other structural related competitors. The analytical method gave detection limits of 0.23, 0.17, and 0.09 mg L-1 in wastewater influent, effluent, and deionized water, respectively. The recovery for the wastewater influent and effluent spiked with 5 µg L-1 of ketoprofen was 68%, whereas 114% was obtained for deionized water. The concentrations of ketoprofen in the influent and effluent samples were in the ranges of 22.5 - 34.0 and 1.14 - 5.33 mg.L-1, respectively. The relative standard deviation (RSD) given as ± values indicates that the developed analytical method for the analysis of ketoprofen in wastewater was rapid, affordable, accurate, precise, sensitive, and selective.


2014 ◽  
Vol 605 ◽  
pp. 67-70 ◽  
Author(s):  
Mohsen Rahiminezhad ◽  
Seyed Jamaleddin Shahtaheri ◽  
Mohammad Reza Ganjali ◽  
Abbas Rahimi Rahimi Forushani

Molecular imprinting technology has become an interesting research area to the preparation of specific sorbent material for environmental and occupational sample preparation techniques (1). In the molecular imprinting technology, specific binding sites have been formed in polymeric matrix, which often have an affinity and selectivity similar to antibody-antigen systems (2). In molecular imprinted technology, functional monomers are arranged in a complementary configuration around a template molecule, then, cross-linker and solvent are also added and the mixture is treated to give a porous material containing nono-sized binding sites. After extraction of the template molecule by washing, vacant imprinted sites will be left in polymer, which are available for rebinding of the template or its structural analogue (3). The stability, convention of preparation and low cost of these materials make them particularly attractive (4). These synthetic materials have been used for capillary electrochromatography (5), chromatography columns (6), sensors (7), and catalyze system (8). Depending on the molecular imprinting approach, different experimental variables such as the type and amounts of functional monomers, porogenic solvent, initiator, monomer to cross-linker ratio, temperature, and etc may alter the properties of the final polymeric materials. In this work, chemometric approach based on Central Composite Design (CCD) was used to design the experiments as well as to find the optimum conditions for preparing appropriate diazinon molecularly imprinted polymer.


2016 ◽  
Vol 88 (5) ◽  
pp. 2734-2741 ◽  
Author(s):  
María Pilar Chantada-Vázquez ◽  
Juan Sánchez-González ◽  
Elena Peña-Vázquez ◽  
María Jesús Tabernero ◽  
Ana María Bermejo ◽  
...  

2013 ◽  
Vol 699 ◽  
pp. 712-717
Author(s):  
Huai Min Guan ◽  
Yue Jin Tong ◽  
Jin Hua Zheng ◽  
Xiang Li

Research has been focused on the development of molecularly imprinted polymers using a chitosan derivative as the precursor. An O-acyl chitosan was synthesized by the selective protection of amino groups of chitosan in MeSO3H and was cross-linked with glutaraldehyde in the presence/ absence of template molecule, cholesterol. The effect of the degree of the acyl substitution on the selection of precursor was investigated, regarding the solubility of chitosan derivative, interaction between the precursor and imprinted molecule, and degree of the cross-linking of precursor. The rebinding experiments indicated the significant recognition for cholesterol with imprinted polymer as compared with non-imprinted polymer. It was found that a good binding capacity of the imprinted polymer towards cholesterol could be achieved in a less-polar solvent. And the O-acyl chitosan-based molecularly imprinted polymer obtained displayed good recognition selectivity for cholesterol in comparison to similarly strctural analogue, cholesterol acetate.


2014 ◽  
Vol 6 (23) ◽  
pp. 9483-9489 ◽  
Author(s):  
Xiao Zhang ◽  
Feng Shen ◽  
Zhe Zhang ◽  
Yue Xing ◽  
Xueqin Ren

A new bifunctional monomer acting as both a cross-linker and a functional monomer was synthesized and applied in the preparation of water-compatible naproxen sodium imprinted polymers.


Sign in / Sign up

Export Citation Format

Share Document