Microencapsulation: an emerging technique in the modern coating industry

RSC Advances ◽  
2016 ◽  
Vol 6 (108) ◽  
pp. 106964-106979 ◽  
Author(s):  
Kunal Wazarkar ◽  
Deepak Patil ◽  
Ajay Rane ◽  
Dinesh Balgude ◽  
Mukesh Kathalewar ◽  
...  

The protection of metal from corrosion is of great interest for which various methods have been implemented in the past such as organic–inorganic protective coatings, use of corrosion inhibitors, sol–gel coatings, self healing coatingsetc.

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 409 ◽  
Author(s):  
Luigi Calabrese ◽  
Edoardo Proverbio

Research activity concerning nanoporous zeolites has grown considerably in recent decades. The structural porosity of zeolites provides versatile functional properties such as molecular selectivity, ion and molecule storage capacity, high surface area, and pore volume which combined with excellent thermal and chemical stability can extend its application fields in several industrial sectors. In such a context, anti-corrosion zeolite coatings are an emerging technology able to offer a reliable high performing and environmental friendly alternative to conventional chromate-based protective coatings. In this article, a focused overview on anti-corrosion performances of sol-gel composite zeolite coatings is provided. The topic of this review is addressed to assess the barrier and self-healing properties of composite zeolite coating. Based on results available in the literature, a property–structure relationship of this class of composites is proposed summarizing, furthermore, the competing anti-corrosion active and passive protective mechanisms involved during coating degradation. Eventually, a brief summary and a future trend evaluation is also reported.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
B. E. Amitha Rani ◽  
Bharathi Bai J. Basu

Corrosion control of metals is of technical, economical, environmental, and aesthetical importance. The use of inhibitors is one of the best options of protecting metals and alloys against corrosion. The environmental toxicity of organic corrosion inhibitors has prompted the search for green corrosion inhibitors as they are biodegradable, do not contain heavy metals or other toxic compounds. As in addition to being environmentally friendly and ecologically acceptable, plant products are inexpensive, readily available and renewable. Investigations of corrosion inhibiting abilities of tannins, alkaloids, organic,amino acids, and organic dyes of plant origin are of interest. In recent years, sol-gel coatings doped with inhibitors show real promise. Although substantial research has been devoted to corrosion inhibition by plant extracts, reports on the detailed mechanisms of the adsorption process and identification of the active ingredient are still scarce. Development of computational modeling backed by wet experimental results would help to fill this void and help understand the mechanism of inhibitor action, their adsorption patterns, the inhibitor-metal surface interface and aid the development of designer inhibitors with an understanding of the time required for the release of self-healing inhibitors. The present paper consciously restricts itself mainly to plant materials as green corrosion inhibitors.


2012 ◽  
Vol 05 ◽  
pp. 234-241 ◽  
Author(s):  
NAHID PIRHADY TAVANDASHTI ◽  
SOHRAB SANJABI

Nanostructured hybrid silica/epoxy films containing boehmite nanoparticles were investigated in the present work as pretreatments for AA2024 alloy. To produce the nanocomposite sol-gel films, boehmite nanoparticles prepared from hydrolysis/condensation of aluminum isopropoxide ( AlI ) were doped into another hybrid organosiloxane sol. The produced oxide nanoparticles have the capability to act as nanoreservoirs of corrosion inhibitors, releasing them controllably to protect the metallic substrate from corrosion. For this purpose the corrosion inhibitor, cerium nitrate, was introduced into the sol-gel system via loading the nanoparticles. The morphology and the structure of the hybrid sol-gel films were studied by Scanning Electron Microscopy (SEM). The corrosion protection properties of the films were investigated by Potentiodynamic Scanning (PDS) and Electrochemical Impedance Spectroscopy (EIS). The results show that the presence of boehmite nanoparticles highly improved the corrosion protection performance of the silica/epoxy coatings. Moreover, they can act as nanoreservoirs of corrosion inhibitors and provide prolonged release of cerium ions, offering a self-healing property to the film.


2020 ◽  
pp. 133-139
Author(s):  
Sanatan Ratna ◽  
B Kumar

In the past few decades, there has been lot of focus on the issue of sustainability. This has occurred due to the growing concerns related to climate change and the growing awareness about environmental concerns. Also, the competition at global level has led to the search for the most sustainable route in the industries. The current research work deals with the selection of green supplier in a Nickle coating industry based on certain weighted green attributes. For this purpose, a hybrid tool comprising of Fuzzy AHP (Fuzzy Analytical Hierarchy) and VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) is used. The Fuzzy AHP is used for assigning proper weights to the selected criteria for supplier evaluation, while VIKOR is used for final supplier selection based on the weighted criteria. The three criterions for green supplier selection are, Ecological packaging, Corporate socio-environmental responsibility and Staff Training. The outcome of the integrated model may serve as a steppingstone to other SMEs in different sectors for selecting the most suitable supplier for addressing the sustainability issue.


1998 ◽  
Vol 519 ◽  
Author(s):  
L. Bergogne ◽  
S. Fennouh ◽  
J. Livage ◽  
C. Roux

AbstractBioencapsulation in sol-gel materials has been widely studied during the past decade. Trapped species appear to retain their bioactivity in the porous silica matrix. Small analytes can diffuse through the pores allowing bioreactions to be performed in-situ, inside the sol-gel glass. A wide range of biomolecules and micro-organisms have been encapsulated. The catalytic activity of enzymes is used for the realization of biosensors or bioreactors. Antibody-antigen recognition has been shown to be feasible within sol-gel matrices. Trapped antibodies bind specifically the corresponding haptens and can be used for the detection of traces of chemicals. Even whole cells are now encapsulated without any alteration of their cellular organization. They can be used for the production of chemicals or as antigens for immunoassays.


Author(s):  
Tong Liu ◽  
Lingwei Ma ◽  
Xin Wang ◽  
Jinke Wang ◽  
Hongchang Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document