Predicting surface tension for vegetable oil and biodiesel fuels

RSC Advances ◽  
2016 ◽  
Vol 6 (88) ◽  
pp. 84645-84657 ◽  
Author(s):  
Thangaraja J. ◽  
Anand K. ◽  
Pramod S. Mehta

A unified methodology for predicting surface tension of oil and biodiesel is proposed. Effects of transesterification and compositional variations on surface tension of biodiesel are discussed and methods to address the variations are suggested.

2010 ◽  
Vol 5 (4) ◽  
pp. 19-22
Author(s):  
A. Gopinath ◽  
◽  
Sukumar Puhan ◽  
Nagarajan . ◽  
◽  
...  

2020 ◽  
Vol 35 (2) ◽  
pp. 180-189
Author(s):  
Rafael Luiz Panini ◽  
Ulisses Rocha Antuniassi ◽  
Rone Batista De Oliveira

VELOCIDADE DE TAMANHO DE GOTAS DE PULVERIZAÇÃO EM FUNÇÃO DA VARIAÇÃO DA TENSÃO SUPERFICIAL E DA VISCOSIDADE DE CALDAS DE ÓLEO VEGETAL E SURFACTANTE   RAFAEL LUIZ PANINI1; ULISSES ROCHA ANTUNIASSI²; RONE BATISTA DE OLIVEIRA³   ¹ Consultor em Tecnologia de Aplicação, CIMOTECH, Avenida Antenor de Almeida 1-199 E06, CEP 17047-590, Bauru, São Paulo, Brasil, [email protected]       ² Professor Dr. Titular, Depto de Eng. Rural, FCA-UNESP, Rua José Barbosa de Barros, nº 1780, Caixa Postal 237, CEP 18610-307, Fazenda Lageado, Botucatu-SP, [email protected]                ³ Professor Dr. Adjunto, Centro de Ciências Agrárias, UENP, Rodovia BR 369, km 54 Vila Maria CEP 86360- 000, Bandeirantes, Paraná, Brasil, [email protected]   RESUMO: O presente trabalho tem por objetivo de quantificar a velocidade de diferentes tamanhos de gotas geradas por uma ponta de jato plano de faixa ampliada e determinar a correlação com a tensão superficial e a viscosidade das soluções aquosas de surfactante e óleo vegetal em diferentes concentrações. Foi utilizado o surfactante Agral® (0,0125; 0,025; 0,05; 0,1; 0,2; 0,5%, v/v) e o óleo vegetal Natur’óleo® (0,5; 5, 10, 15 e 17%, v/v), além de uma calda padrão (somente água). Os ensaios foram conduzidos em delineamento inteiramente casualizado com cinco repetições. Para todas as concentrações determinou-se a viscosidade, a tensão superficial e a velocidade de gotas geradas pela ponta XR11003 (280 kPa). O espectro e a velocidade de gotas foram determinados por um analisador de partículas, modelo VisiSize Portable P15 (Oxford Lasers, Imaging Division, Oxford, U.K.). O sistema foi programado para determinar a velocidade das gotas em diferentes diâmetros: 50, 100, 150, 200, 250, 300 e 350 µm. Correlação de Pearson foi aplicada para verificar a relação entre a velocidade de gotas e a tensão superficial e a viscosidade. Também foram ajustados modelos para os dados de velocidade em função do tamanho de gotas, viscosidade e tensão superficial. Os resultados indicam que a relação da tensão superficial e viscosidade de caldas de adjuvantes dependem do tipo de adjuvante (vegetal ou surfactante). As emulsões formadas por óleo vegetal apresentam relação linear positiva entre concentração e viscosidade e negativa entre concentração e tensão superficial. O surfactante não apresentou relação linear da concentração com a viscosidade e apresentou relação linear negativa com a tensão superficial. A velocidade de gotas tem relação quadrática com o tamanho de gotas, independente dos adjuvantes utilizados (óleo vegetal ou surfactante). As relações de tamanho de gotas com viscosidade e tensão superficial são mais entendidas com gotas maiores que 100 µm.   Palavras-chave: velocidade de gotas, adjuvantes, tamanho de gotas.   VELOCITY OF SPRAY DROPLETS SIZE IN FUNCTION OF THE SURFACE TENSION AND THE VISCOSITY CONTEND VEGETABLE OIL AND SURFACTANT   ABSTRACT: The present work aims to quantify the speed of different sizes of droplets generated by a flat jet tip with extended range and to determine the correlation with surface tension and viscosity of aqueous solutions of surfactant and vegetable oil in different concentrations. The surfactant Agral® (0.0125; 0.025; 0.05; 0.1; 0.2; 0.5%, v / v) and the vegetable oil Natur'óleo® (0.5; 5, 10, 15 and 17%, v / v), in addition to a standard syrup (water only). The tests were conducted in a completely randomized design with five replications. For all concentrations, viscosity and surface tension and droplet speed generated by the XR11003 tip (280 kPa) were determined. The spectrum and velocity of drops were determined by a particle analyzer, model VisiSize Portable P15 (Oxford Lasers, Imaging Division, Oxford, U.K.). The system was programmed to determine the speed of the drops in different diameters: 50, 100, 150, 200, 250, 300 and 350 µm. Pearson's correlation was applied to verify the relationship between the speed of drops and the surface tension and viscosity. Models were also adjusted for speed data as a function of droplet size, viscosity and surface tension. The results indicate that the relationship between surface tension and viscosity of adjuvant mixtures depends on the type of adjuvant (vegetable or surfactant). Emulsions formed by vegetable oil have a positive linear relationship between concentration and viscosity and a negative relationship between concentration and surface tension. The surfactant showed no linear relationship between concentration and viscosity and showed a negative linear relationship with surface tension. The speed of droplets has a quadratic relationship with the size of droplets, regardless of the adjuvants used (vegetable oil or surfactant). Drop size relationships with viscosity and surface tension are best understood with drops larger than 100 µm.   Keywords: velocity of droplet, adjuvants, viscosity, droplet size.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Muhammad Akhlis Rizza ◽  
Widya Wijayanti ◽  
Nurkholis Hamidi ◽  
I. N. G. Wardana

This study aims to experimentally determine the role of intermolecular forces on the contact angle of vegetable oil droplets. Contact angles were recorded using a microscope and measured using digital software. The results show that the surface tension of vegetable oils is influenced by the London force between the electron clouds of molecules. The process of cooling increases vegetable oil contact angles, due to the decreased kinetic energy of constituent molecules and increased London force on the molecules. A decrease in temperature causes the surrounding water vapor to condense, which adheres to the droplet surface (due to the hydrophilic properties of molecules). Hydrogen bonds develop after moisture adheres to the surface. Further, water molecules on the droplet surface reduce the surface tension, because of hydrogen bonds between the molecules on the droplet surface and moisture. Hydrogen bonds among the molecules force water molecules to accumulate on the droplet surface, which suppresses the droplet surface; therefore the contact angle decreases.


2011 ◽  
Vol 2011.64 (0) ◽  
pp. 329-330
Author(s):  
Satoshi SHIMIZU ◽  
Taiki IKEDA ◽  
Akio Kameda ◽  
Runkun ZHANG ◽  
Eiji KINOSHITA

2010 ◽  
Vol 24 (1) ◽  
pp. 664-672 ◽  
Author(s):  
K. Anand ◽  
Avishek Ranjan ◽  
Pramod S. Mehta

Sign in / Sign up

Export Citation Format

Share Document