scholarly journals Role of Intermolecular Forces on the Contact Angle of Vegetable Oil Droplets during the Cooling Process

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Muhammad Akhlis Rizza ◽  
Widya Wijayanti ◽  
Nurkholis Hamidi ◽  
I. N. G. Wardana

This study aims to experimentally determine the role of intermolecular forces on the contact angle of vegetable oil droplets. Contact angles were recorded using a microscope and measured using digital software. The results show that the surface tension of vegetable oils is influenced by the London force between the electron clouds of molecules. The process of cooling increases vegetable oil contact angles, due to the decreased kinetic energy of constituent molecules and increased London force on the molecules. A decrease in temperature causes the surrounding water vapor to condense, which adheres to the droplet surface (due to the hydrophilic properties of molecules). Hydrogen bonds develop after moisture adheres to the surface. Further, water molecules on the droplet surface reduce the surface tension, because of hydrogen bonds between the molecules on the droplet surface and moisture. Hydrogen bonds among the molecules force water molecules to accumulate on the droplet surface, which suppresses the droplet surface; therefore the contact angle decreases.

Author(s):  
Rami Benkreif ◽  
Fatima Zohra Brahmia ◽  
Csilla Csiha

AbstractSurface tension of solid wood surfaces affects the wettability and thus the adhesion of various adhesives and wood coatings. By measuring the contact angle of the wood, the surface tension can be calculated based on the Young-Dupré equation. Several publications have reported on contact angle measured with different test liquids, under different conditions. Results can only be compared if the test conditions are similar. While the roles of the drop volume, image shooting time etc., are widely recognized, the role of the wood surface moisture content (MC) is not evaluated in detail. In this study, the effect of wood moisture content on contact angle values, measured with distilled water and diiodomethane, on sanded birch (Betula pendula) surfaces was investigated, in order to find the relationship between them. With increasing MC from approximately 6% to 30%, increasing contact angle (decreasing surface tension) values were measured according to a logarithmic function. The function makes possible the calculation of contact angles that correspond to different MCs.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Gang Zhou ◽  
Han Qiu ◽  
Qi Zhang ◽  
Mao Xu ◽  
Jiayuan Wang ◽  
...  

Wettability is one of the key chemical properties of coal dust, which is very important to dedusting. In this paper, the theory of liquid wetting solid was presented firstly; then, taking the gas coal of Xinglongzhuang coal mine in China as an example, by determination of critical surface tension of coal piece, it can be concluded that only when the surface tension of surfactant solution is less than 45 mN/m can the coal sample be fully wetted. Due to the effect of particle dispersity, compared with the contact angle of milled coal particle, not all the contact angles of screened coal powder with different sizes have a tendency to increase. Furthermore, by the experiments of coal samples’ specific surface areas and porosities, it can be achieved that the volume of single-point total pore decreases with the gradual decreasing of coal’s porosity, while the ultramicropores’ dispersities and multipoint BET specific surface areas increase. Besides, by a series of contact angle experiments with different surfactants, it can be found that with the increasing of porosity and the decreasing of volume percentage of ultramicropore, the contact angle tends to reduce gradually and the coal dust is much easier to get wetted.


2018 ◽  
Vol 2 (4) ◽  
pp. 68 ◽  
Author(s):  
Emil Chibowski ◽  
Aleksandra Szcześ ◽  
Lucyna Hołysz

Using neodymium ring magnets (0.5–0.65 T), the experiments on the magnetic field (MF) effects on water evaporation rate and surface tension were performed at room temperature (22–24 °C). In accordance with the literature data, the enhanced evaporation rates were observed in the experiments conducted in a period of several days or weeks. However, the evaporated amounts of water (up to 440 mg over 150 min) in particular experiments differed. The evaporated amounts depended partially on which pole of the ring magnet was directed up. The relatively strong MF (0.65 T) caused a slight decrease in surface tension (−2.11 mN/m) which lasted longer than 60 min and the memory effect vanished slowly. The surface tension data reduced by the MF action are reported in the literature, although contrary results can be also found. The observed effects can be explained based on literature data of molecular simulations and the suggestion that MF affects the hydrogen bonds of intra- and inter-clusters of water molecules, possibly even causing breakage some of them. The Lorentz force influence is also considered. These mechanisms are discussed in the paper.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Ho Seon Ahn ◽  
Joonwon Kim ◽  
Moo Hwan Kim

Dynamic wetting behaviors of water droplet on the modified surface were investigated experimentally. Dynamic contact angles were measured as a characterization method to explain the extraordinary pool boiling critical heat flux (CHF) enhancement on the zirconium surface by anodic oxidation modification. The sample surface is rectangular zirconium alloy plates (20 × 25 × 0.7 mm), and 12 μl of deionized water droplets were fallen from 40 mm of height over the surface. Dynamic wetting movement of water on the surface showed different characteristics depending on static contact angle (49.3 deg–0 deg) and surface temperature (120 °C–280 °C). Compared with bare surface, wettable and spreading surface had no-receding contact angle jump and seemed stable evaporating meniscus of liquid droplet in dynamic wetting condition on hot surface. This phenomenon could be explained by the interaction between the evaporation recoil and the surface tension forces. The surface tension force increased by micro/nanostructure of the modified zirconium surface suppresses the vapor recoil force by evaporation which makes the water layer unstable on the heated surface. Thus, such increased surface force could sustain the water layer stable in pool boiling CHF condition so that the extraordinary CHF enhancement could be possible.


Author(s):  
Dong-Lei Zeng ◽  
Biao Feng ◽  
Jia-Wen Song ◽  
Li-Wu Fan

Abstract Temperature-dependent wettability of water droplets on a metal surface in a pressurized environment is of great theoretical and practical significance. In this paper, molecular dynamic simulation is used to study this problem by relating the temperature-dependent apparent contact angles to the changes in solid-liquid and solid-vapor interfacial free energies and hydrogen bonds in the nano-sized water droplets with increasing the temperature. The temperature range of interest is set from 298 K to 538 K in a 20 K interval under a constant pressure of 7 MPa. The results show that the contact angle in general decreases with raising the temperature and decreasing trend can be divided into two sections with different slopes. The contact angle drops slowly when the temperature is below 458 K as a critical point. Beyond this point, the contact angle shows a much steeper decrease. The difference between solid-vapor and solid-liquid interfacial free energies is found to decrease slightly with temperature. Combining with that the surface tension drops with increasing the temperature, a decreasing trend of the contact angle is expected according to the Young’s equation. As the temperature increases, the number and average energy of the hydrogen bonds both decrease, and the hydrogen bonds tend to aggregate at the bottom of the nano-droplets.


2019 ◽  
Vol 9 (17) ◽  
pp. 3445 ◽  
Author(s):  
Anna Zdziennicka ◽  
Katarzyna Szymczyk ◽  
Bronisław Jańczuk ◽  
Rafał Longwic ◽  
Przemysław Sander

Oleic, linoleic, and linolenic acids are the main components of canola oil and their physiochemical properties decide on the use of canola oil as fuel for diesel engines. Therefore, the measurements of the surface tension of oleic, linoleic, and linolenic acids being the components of the canola oil, as well as their contact angles on the polytetrafluoroethylene (PTFE), poly(methyl methacrylate) (PMMA), and engine valve, were made. Additionally, the surface tension and contact angle on PTFE, PMMA, and the engine valve of the oleic acid and n-hexane mixtures were measured. On the basis of the obtained results, the components and parameters of oleic, linoleic, and linolenic acids’ surface tension were determined and compared to those of the canola oil. Next, applying the components and parameters of these acids, their adhesion work to PTFE, PMMA, and the engine valve was calculated by means of various methods.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 787 ◽  
Author(s):  
Federico Veronesi ◽  
Giulio Boveri ◽  
Mariarosa Raimondo

The search for surfaces with non-wetting behavior towards water and low-surface tension liquids affects a wide range of industries. Surface wetting is regulated by morphological and chemical features interacting with liquid phases under different ambient conditions. Most of the approaches to the fabrication of liquid-repellent surfaces are inspired by living organisms and require the fabrication of hierarchically organized structures, coupled with low surface energy chemical composition. This paper deals with the design of amphiphobic metals (AM) and alloys by deposition of nano-oxides suspensions in alcoholic or aqueous media, coupled with perfluorinated compounds and optional infused lubricant liquids resulting in, respectively, solid–liquid–air and solid–liquid–liquid working interfaces. Nanostructured organic/inorganic hybrid coatings with contact angles against water above 170°, contact angle with n-hexadecane (surface tension γ = 27 mN/m at 20 °C) in the 140–150° range and contact angle hysteresis lower than 5° have been produced. A full characterization of surface chemistry has been undertaken by X-ray photoelectron spectroscopy (XPS) analyses, while field-emission scanning electron microscope (FE-SEM) observations allowed the estimation of coatings thicknesses (300–400 nm) and their morphological features. The durability of fabricated amphiphobic surfaces was also assessed with a wide range of tests that showed their remarkable resistance to chemically aggressive environments, mechanical stresses and ultraviolet (UV) radiation. Moreover, this work analyzes the behavior of amphiphobic surfaces in terms of anti-soiling, snow-repellent and friction-reduction properties—all originated from their non-wetting behavior. The achieved results make AM materials viable solutions to be applied in different sectors answering several and pressing technical needs.


2020 ◽  
Vol 1 (105) ◽  
pp. 5-16
Author(s):  
R. Subagyo ◽  
I.N.G. Wardana ◽  
A. Widodo ◽  
E. Siswanto

Purpose: To find out more about the role of hydrogen gas bubbles in improving the hydrophobic nature of a layer, especially in the layers of microparticles Alumina (Al2O3) with Magnesium (Mg). Design/methodology/approach: The method used is an experimental method by first conducting the SEM-Edx test, testing the content of the elements in the waxy layer and observing the topographic shape on the surface of the taro leaves. Then prepare a mixture of Alumina micro particles with Magnesium to investigate the hydrophobicity of the taro leaves. The mixed presentations between Alumina and Magnesium are: (0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%). Findings: The results of this study found three conditions of the Alumina and Magnesium mix layer when in contact with a droplet, namely: Hydrophobic conditions occur when the surface structure of the rough mixed micro layer forms micro crevices, then bubbles of hydrogen gas fill it to form trapped gases. When droplets come in contact with the surface of the mixed layer the effect of the gas being trapped is very effective at creating hydrophobic properties. While the transition conditions occur when more and more hydrogen gas bubbles along with the increasing percentage of Mg and the opposite occurs in micro particle fissures. Bubbles fill the micro-gap space fully so that the tops of the micro particles are covered by bubbles. This causes the droplet surface tension to weaken, so the droplet contact angle decreases. Furthermore, hydrophilic conditions occur when the micro gap is getting narrower as the percentage of Mg increases and the formation of hydrogen gas bubbles increases. The high level of bubble density in the micro gap closes the peaks of the micro particles, which results in the surface tension of the droplet getting weaker. In this weak surface tension condition, the hydrogen bubble can break through the droplet surface tension and change its hydrophobic nature to hydrophilic. Research limitations/implications: This research is limited to the hydrophobicity of Alumina and Magnesium materials, mainly to investigate the role of hydrogen gas in supporting the hydrophobic nature of taro leaves (Colocasia esculenta). Practical implications: The practical implication in this study is the use of hydrophobic membranes which are widely applied to filtration. Originality/value: Discovered the composition of a membrane mixture of Alumina (Al2O3) and Magnesium (Mg) to create hydrophilic and hydrophobic conditions.


Author(s):  
Eiji Ishii ◽  
Taisuke Sugii

Predicting the spreading behavior of droplets on a wall is important for designing micro/nano devices used for reagent dispensation in micro-electro-mechanical systems, printing processes of ink-jet printers, and condensation of droplets on a wall during spray forming in atomizers. Particle methods are useful for simulating the behavior of many droplets generated by micro/nano devices in practical computational time; the motion of each droplet is simulated using a group of particles, and no particles are assigned in the gas region if interactions between the droplets and gas are weak. Furthermore, liquid-gas interfaces obtained from the particle method remain sharp by using the Lagrangian description. However, conventional surface tension models used in the particle methods are used for predicting the static contact angle at a three-phase interface, not for predicting the dynamic contact angle. The dynamic contact angle defines the shape of a spreading droplet on a wall. We previously developed a surface tension model using inter-particle force in the particle method; the static contact angle of droplets on the wall was verified at various contact angles, and the heights of droplets agreed well with those obtained theoretically. In this study, we applied our surface tension model to the simulation of a spreading droplet on a wall. The simulated dynamic contact angles for some Weber numbers were compared with those measured by Šikalo et al, and they agreed well. Our surface tension model was useful for simulating droplet motion under static and dynamic conditions.


2019 ◽  
Author(s):  
Robert O. David ◽  
Jonas Fahrni ◽  
Claudia Marcolli ◽  
Fabian Mahrt ◽  
Dominik Brühwiler ◽  
...  

Abstract. It has recently been shown that pore condensation and freezing (PCF) is a mechanism responsible for ice formation under cirrus cloud conditions. PCF is defined as the condensation of liquid water in narrow capillaries below water saturation due to the Kelvin effect, followed by either heterogeneous or homogeneous nucleation depending on the temperature regime and presence of an ice nucleating active site. By using sol-gel synthesized silica with well-defined pore diameters, morphology and distinct chemical surface-functionalization, the role of the water-silica contact angle and pore width on PCF is investigated. We find that contact angle and pore width play an important role in determining the relative humidity required for capillary condensation as predicted by the Kelvin effect and subsequent ice nucleation at cirrus temperatures. For the pore diameters and contact angles covered in this study, 2.2–9.2 nm and 15–78°, respectively, our results reveal that the contact angle plays an important role in predicting the humidity required for pore filling while the pore diameter determines the ability of pore water to freeze. For T > 235 K and below water saturation, pore diameters and contact angles were not able to predict the freezing ability of the particles suggesting an absence of active sites, thus ice nucleation did not proceed via a PCF mechanism. Rather, the ice nucleating ability of the particles depended solely on chemical functionalization. Therefore, parameterizations for the ice nucleating abilities of particles at cirrus conditions should differ from parameterizations at mixed-phase clouds conditions. Our results support PCF as the atmospherically relevant ice nucleation mechanism below water saturation when porous surfaces are encountered in the troposphere.


Sign in / Sign up

Export Citation Format

Share Document