Mesoporous graphitic carbon nitride functionalized iron oxides for promoting phenol oxidation activity

RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91960-91967 ◽  
Author(s):  
Lei Luo ◽  
Anfeng Zhang ◽  
Michael J. Janik ◽  
Chunshan Song ◽  
Xinwen Guo

Mesoporous graphitic carbon nitride was found to be a superior support of iron oxides, improving the dispersion, adjusting the iron oxidation state, and promoting the catalytic oxidation of phenol.

2018 ◽  
Vol 78 (5) ◽  
pp. 1023-1033 ◽  
Author(s):  
Rong Tang ◽  
Renli Ding ◽  
Xianchuan Xie

Abstract A novel metal-free oxygen-doped graphitic carbon nitride (O-g-C3N4) was synthesized by the pre-treatment of bulk graphitic carbon nitride (g-C3N4) with hydrogen peroxide (H2O2), and combined with high-temperature calcination treatment. The obtained 2-O-g-C3N4 catalyst exhibits high activity in visible light photocatalytic degradation of bisphenol A (BPA) with a mineralization rate as high as 62.3%. According to the characterization results of X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, Brunauer-Emmett-Teller and photoluminescence spectroscopy analyses, the markedly higher visible-light-driven oxidation activity of 2-O-g-C3N4 is attributed to the larger specific surface area, wider range of light responses and low charge recombination rate. Moreover, the trapping experiment shows that superoxide radicals (•O2−) are the dominant active species in the BPA decomposition process over 2-O-g-C3N4. This study presents a simple and environment-friendly method to synthesise oxygen-doped graphitic carbon nitride.


2019 ◽  
Vol 23 (12) ◽  
pp. 1284-1306
Author(s):  
Vijai K. Rai ◽  
Fooleswar Verma ◽  
Suhasini Mahata ◽  
Smita R. Bhardiya ◽  
Manorama Singh ◽  
...  

The polymeric graphitic carbon nitride (g-C3N4) has been one of the interesting earth abundant elements. Though g-C3N4 finds application as a photocatalyst, its photocatalytic behaviour is limited because of low efficiency, mainly due to rapid charge recombination. To overcome this problem, several strategies have been developed including doping of metal/non-metal in the cavity of g-C3N4. Moreover, the CoFe2O4 NPs have been used in many organic transformations because of its high surface area and easy separation due to its magnetic nature. This review describes the role of cobalt ferrite as magnetic nanoparticles and metal-doped carbon nitride as efficient heterogeneous catalysts for new carbon-carbon and carbon-hetero atom bond formation followed by heterocyclization. Reactions which involved new catalysts for selective activation of readily available substrates has been reported herein. Since nanoparticles enhance the reactivity of catalyst due to higher catalytic area, they have been employed in various reactions such as addition reaction, C-H activation reaction, coupling reaction, cyclo-addition reaction, multi-component reaction, ring-opening reaction, oxidation reaction and reduction reactions etc. The driving force for choosing this topic is based-on huge number of good publications including different types of spinels/metal doped-/graphitic carbon nitride reported in the literature and due to interest of synthetic community in recent years. This review certainly will represent the present status in organic transformation and for exploring further their catalytic efficiency to new organic transformations involving C-H activation reaction through coupling, cyclo-addition, multi-component, ring-opening, oxidation and reduction reactions.


Sign in / Sign up

Export Citation Format

Share Document