scholarly journals Polystyrene core–silica shell composite particles: effect of mesoporous shell structures on oxide CMP and mechanical stability

RSC Advances ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 6548-6558 ◽  
Author(s):  
Yang Chen ◽  
Ailian Chen ◽  
Jiawei Qin

Organic/inorganic composite particles with a core–shell structure exhibit potential applications in chemical mechanical polishing/planarization (CMP) for mechanically challenging materials (copper and low-k dielectrics etc.).

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 867
Author(s):  
Lin Guo ◽  
Zhu Mao ◽  
Sila Jin ◽  
Lin Zhu ◽  
Junqi Zhao ◽  
...  

Surface-enhanced Raman scattering (SERS) is a powerful tool in charge transfer (CT) process research. By analyzing the relative intensity of the characteristic bands in the bridging molecules, one can obtain detailed information about the CT between two materials. Herein, we synthesized a series of Au nanorods (NRs) with different length-to-diameter ratios (L/Ds) and used these Au NRs to prepare a series of core–shell structures with the same Cu2O thicknesses to form Au NR–4-mercaptobenzoic acid (MBA)@Cu2O core–shell structures. Surface plasmon resonance (SPR) absorption bands were adjusted by tuning the L/Ds of Au NR cores in these assemblies. SERS spectra of the core-shell structure were obtained under 633 and 785 nm laser excitations, and on the basis of the differences in the relative band strengths of these SERS spectra detected with the as-synthesized assemblies, we calculated the CT degree of the core–shell structure. We explored whether the Cu2O conduction band and valence band position and the SPR absorption band position together affect the CT process in the core–shell structure. In this work, we found that the specific surface area of the Au NRs could influence the CT process in Au NR–MBA@Cu2O core–shell structures, which has rarely been discussed before.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750056 ◽  
Author(s):  
Huiping Shao ◽  
Jiangcong Qi ◽  
Tao Lin ◽  
Yuling Zhou ◽  
Fucheng Yu

The core–shell structure composite magnetic nanoparticles (NPs), Fe3O4@chitosan@nimodipine (Fe3O4@CS@NMDP), were successfully synthesized by a chemical cross-linking method in this paper. NMDP is widely used for cardiovascular and cerebrovascular disease prevention and treatment, while CS is of biocompatibility. The composite particles were characterized by an X-ray diffractometer (XRD), a Fourier transform infrared spectroscopy (FT-IR), a transmission electron microscopy (TEM), a vibrating sample magnetometers (VSM) and a high performance liquid chromatography (HPLC). The results show that the size of the core–shell structure composite particles is ranging from 12[Formula: see text]nm to 20[Formula: see text]nm and the coating thickness of NMDP is about 2[Formula: see text]nm. The saturation magnetization of core–shell composite NPs is 46.7[Formula: see text]emu/g, which indicates a good potential application for treating cancer by magnetic target delivery. The release percentage of the NMDP can reach 57.6% in a short time of 20[Formula: see text]min in the PBS, and to 100% in a time of 60[Formula: see text]min, which indicates the availability of Fe3O4@CS@NMDP composite NPs for targeting delivery treatment.


2019 ◽  
Vol 40 (10) ◽  
pp. 3805-3813 ◽  
Author(s):  
Kamila Gosz ◽  
Józef Haponiuk ◽  
Aleksandra Mielewczyk‐Gryń ◽  
Łukasz Piszczyk

RSC Advances ◽  
2017 ◽  
Vol 7 (84) ◽  
pp. 53509-53515 ◽  
Author(s):  
Tao Li ◽  
ZhiChao Wang ◽  
YunRui Duan ◽  
Jie Li ◽  
Hui Li

An abnormal self-organized core/shell structure is formed in the liquid Al–Pb alloy, which can be controlled by confined conditions.


2020 ◽  
Vol 740 ◽  
pp. 137016
Author(s):  
Xiaohong Wang ◽  
Liang Guo ◽  
Xiaojie Li ◽  
Xueqi Li ◽  
Lingjie Kong ◽  
...  

2007 ◽  
Vol 14 (01) ◽  
pp. 117-122 ◽  
Author(s):  
JIEGUANG SONG ◽  
LIANMENG ZHANG ◽  
JUNGUO LI ◽  
JIANRONG SONG

ZrB 2 has some excellent performances, but it is easily oxidized at high temperatures to impact the high-temperature strength, which restricts its applied range. To protect from the oxidization and improve the strength of ZrB 2 at high temperature, the surface of ZrB 2 particles is coated with the Al ( OH )3– Y ( OH )3 shell to synthesize ZrB 2@ Al ( OH )3– Y ( OH )3 core–shell composite particles. Through the thermodynamic and kinetic analyses of the heterogeneous nucleation and homogeneous nucleation, the concentration product of precursor ion ( Y 3+ or Al 3+) and OH - (Qi) must be greater than the solubility product (K sp ), respectively; the conditions of Y 3+ and Al 3+ are reached to produce Al ( OH )3– Y ( OH )3 shell on the ZrB 2 surface between the Y 3+ line and the AlO 2- line. Through TEM and XRD analyses, ZrB 2@ Al ( OH )3– Y ( OH )3 core–shell composite particles are successfully synthesized by the co-precipitation method, the shell layer quality is better at pH = 9, which established the foundation for preparing high-performance YAG / ZrB 2 and Al 2 O 3– YAG / ZrB 2 multiphase ceramic materials.


2006 ◽  
Vol 60 (9-10) ◽  
pp. 1219-1223 ◽  
Author(s):  
Haizhong Zheng ◽  
Jian Zhang ◽  
Shiqiang Lu ◽  
Gaochao Wang ◽  
Zhifeng Xu

Sign in / Sign up

Export Citation Format

Share Document