Silicon hydrogensulfates: solid acids with exceptional 25 °C conductivities and possible electrochemical device applications

2017 ◽  
Vol 5 (27) ◽  
pp. 14092-14100 ◽  
Author(s):  
I. S. Klein ◽  
S. K. Davidowski ◽  
J. L. Yarger ◽  
C. A. Angell

Novel anhydrous solid acids of remarkably high proton conductivity and their short-term fuel cell applications are presented.

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3425 ◽  
Author(s):  
Zhai ◽  
Li

As one of the most efficient pathways to provide clean energy, fuel cells have attracted great attention in both academic and industrial communities. Proton exchange membranes (PEMs) or proton-conducting electrolytes are the key components in fuel cell devices, which require the characteristics of high proton conductivity as well as high mechanical, chemical and thermal stabilities. Organic–inorganic hybrid PEMs can provide a fantastic platform to combine both advantages of two components to meet these demands. Due to their extremely high proton conductivity, good thermal stability and chemical adjustability, polyoxometalates (POMs) are regarded as promising building blocks for hybrid PEMs. In this review, we summarize a number of research works on the progress of POM–polymer hybrid materials and related applications in PEMs. Firstly, a brief background of POMs and their proton-conducting properties are introduced; then, the hybridization strategies of POMs with polymer moieties are discussed from the aspects of both noncovalent and covalent concepts; and finally, we focus on the performance of these hybrid materials in PEMs, especially the advances in the last five years. This review will provide a better understanding of the challenges and perspectives of POM–polymer hybrid PEMs for future fuel cell applications.


2022 ◽  
Author(s):  
Debabrata Chakraborty ◽  
Arijit Ghorai ◽  
Piyali Bhanja ◽  
Susanta Banerjee ◽  
Asim Bhaumik

Fuel cell technology for hydrogen production demands high proton conductivity of the membrane material at a relatively higher temperature. Thus, optimization of the proton conductivity of the membrane material is...


RSC Advances ◽  
2015 ◽  
Vol 5 (62) ◽  
pp. 50082-50086 ◽  
Author(s):  
Takahiro Miyahara ◽  
Junpei Miyake ◽  
Soichi Matsuno ◽  
Masahiro Watanabe ◽  
Kenji Miyatake

A sulfonated polybenzophenone/polyimide block copolymer membrane exhibited high proton conductivity, good dimensional and mechanical stabilities, and low gas permeability, which are attractive for fuel cell applications.


2015 ◽  
Vol 6 (1) ◽  
pp. 603-607 ◽  
Author(s):  
Harshitha Barike Aiyappa ◽  
Subhadeep Saha ◽  
Pritish Wadge ◽  
Rahul Banerjee ◽  
Sreekumar Kurungot

Protogenic phytic acid is immobilized by its gelation with iron nitrate in DMF. The resulting pelletized xerogel is observed to show a high proton conductivity of 2.4 × 10−2 S cm−1 at 120 °C and is tried as solid electrolyte for dry H2/O2 fuel cell operation.


2020 ◽  
Vol 11 (4) ◽  
pp. 86
Author(s):  
Tomoki Furuseki ◽  
Yasumitsu Matsuo

Fuel cells using biomaterials have the potential for environmentally friendly clean energy and have attracted a lot of interest. Moreover, biomaterials are expected to develop into in vivo electrical devices such as pacemakers with no side effects. Ion channels, which are membrane proteins, are known to have a fast ion transport capacity. Therefore, by using ion channels, the realization of fuel cell electrolytes with high-proton conductivity can be expected. In this study, we have fabricated a fuel cell using an ion channel electrolyte for the first time and investigated the electrical properties of the ion channel electrolyte. It was found that the fuel cell using the ion channel membrane shows a power density of 0.78 W/cm2 in the humidified condition. On the other hand, the power density of the fuel cell blocking the ion channel with the channel blocker drastically decreased. These results indicate that the fuel cell using the ion channel electrolyte operates through the existence of the ion channel and that the ion channel membrane can be used as the electrolyte of the fuel cell in humidified conditions. Furthermore, the proton conductivity of the ion channel electrolyte drastically increases above 85% relative humidity (RH) and becomes 2 × 10−2 S/m at 96% RH. This result indicates that the ion channel becomes active above 96%RH. In addition, it was deduced from the impedance analysis that the high proton conductivity of the ion channel electrolyte above 96% RH is caused by the activation of ion channels, which are closely related to the fractionalization of water molecule clusters. From these results, it was found that a fuel cell using the squid axon becomes a new fuel cell using the function of the ion channel above 96% RH.


2018 ◽  
Vol 5 (5) ◽  
pp. 1213-1217 ◽  
Author(s):  
Jia-Xuan Wang ◽  
Yi-Di Wang ◽  
Mei-Jie Wei ◽  
Hua-Qiao Tan ◽  
Yong-Hui Wang ◽  
...  

The development of new proton-conducting materials that are cost effective and have high proton conductivity and water stability is very important in fuel cell technology.


2019 ◽  
Vol 48 (6) ◽  
pp. 2190-2196 ◽  
Author(s):  
Shuai-Liang Yang ◽  
Yue-Ying Yuan ◽  
Fei Ren ◽  
Chen-Xi Zhang ◽  
Qing-Lun Wang

A novel 2D nickel(ii) complex (1) has been successfully synthesized using a 2,2′-bipyridyl, polycarboxylsulfonate ligand H4SBTC and Ni2+ ions. Owing to the presence of abundant water molecules, hydrogen bond networks and other protons, 1 and its hybrid membranes demonstrate high proton conductivity.


Sign in / Sign up

Export Citation Format

Share Document