Disulfide modified self-assembly of lipopeptides with arginine-rich periphery achieve excellent gene transfection efficiency at relatively low nitrogen to phosphorus ratios

2017 ◽  
Vol 5 (7) ◽  
pp. 1482-1497 ◽  
Author(s):  
Xiaobing Chen ◽  
Jun Yang ◽  
Hong Liang ◽  
Qian Jiang ◽  
Bowen Ke ◽  
...  

Self-assembled lipopeptides, with viral envelope, capsid-inspired arginine-rich periphery and disulfide bonds, achieve excellent transfectionin vitroandin vivo.

2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


2015 ◽  
Vol 6 (5) ◽  
pp. 780-796 ◽  
Author(s):  
Cheng Wang ◽  
Xiuli Bao ◽  
Xuefang Ding ◽  
Yang Ding ◽  
Sarra Abbad ◽  
...  

A novel coating polymer LPHF is developed for the first time to elevate the transfection efficiency of DP binary polyplexes in vitro and in vivo.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Yinan Zhao ◽  
Tianyi Zhao ◽  
Yanyan Du ◽  
Yingnan Cao ◽  
Yang Xuan ◽  
...  

Abstract Background During the course of gene transfection, the interaction kinetics between liposomes and DNA is speculated to play very important role for blood stability, cellular uptake, DNA release and finally transfection efficiency. Results As cationic peptide liposomes exhibited great gene transfer activities both in vitro and in vivo, two peptide lipids, containing a tri-ornithine head (LOrn3) and a mono-ornithine head (LOrn1), were chosen to further clarify the process of liposome-mediated gene delivery in this study. The results show that the electrostatically-driven binding between DNA and liposomes reached nearly 100% at equilibrium, and high affinity of LOrn3 to DNA led to fast binding rate between them. The binding process between LOrn3 and DNA conformed to the kinetics equation: y = 1.663631 × exp (− 0.003427x) + 6.278163. Compared to liposome LOrn1, the liposome LOrn3/DNA lipoplex exhibited a faster and more uniform uptake in HeLa cells, as LOrn3 with a tri-ornithine peptide headgroup had a stronger interaction with the negatively charged cell membrane than LOrn1. The efficient endosomal escape of DNA from LOrn3 lipoplex was facilitated by the acidity in late endosomes, resulting in broken carbamate bonds, as well as the “proton sponge effect” of the lipid. Conclusions The interaction kinetics is a key factor for DNA transfection efficiency. This work provided insights into peptide lipid-mediated DNA delivery that could guide the development of the next generation of delivery systems for gene therapeutics.


2018 ◽  
Vol 6 (21) ◽  
pp. 3466-3474 ◽  
Author(s):  
Wenpan Li ◽  
Dan Liu ◽  
Qiqi Wang ◽  
Haiyang Hu ◽  
Dawei Chen

Calcium phosphate (CaP) nanoparticles have been considered as a non-viral gene delivery vehicle, but the weakness of inconsistent and low transfection efficiencies is limited to its progress.


1998 ◽  
Vol 72 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Michael P. McCarthy ◽  
Wendy I. White ◽  
Frances Palmer-Hill ◽  
Scott Koenig ◽  
Joann A. Suzich

ABSTRACT The human papillomavirus (HPV) capsid is primarily composed of a structural protein denoted L1, which forms both pentameric capsomeres and capsids composed of 72 capsomeres. The L1 protein alone is capable of self-assembly in vivo into capsidlike structures referred to as viruslike particles (VLPs). We have determined conditions for the quantitative disassembly of purified HPV-11 L1 VLPs to the level of capsomeres, demonstrating that disulfide bonds alone are essential to maintaining long-term HPV-11 L1 VLP structure at physiological ionic strength. The ionic strength of the disassembly reaction was also important, as increased NaCl concentrations inhibited disassembly. Conversely, chelation of cations had no effect on disassembly. Quantitative reassembly to a homogeneous population of 55-nm, 150S VLPs was reliably achieved by the re-formation of disulfide linkages following removal of reducing agent at near-neutral pH and moderate NaCl concentration. HPV-11 L1 VLPs could also be dissociated by treatment with carbonate buffer at pH 9.6, but VLPs could not be regenerated following carbonate treatment. When probed with conformationally sensitive and/or neutralizing monoclonal antibodies, both capsomeres generated by disulfide reduction of purified VLPs and reassembled VLPs formed from capsomeres upon removal of reducing agents exhibited epitopes found on the surface of authentic HPV-11 virions. Antisera raised against either purified VLP starting material or reassembled VLPs similarly neutralized infectious HPV-11 virions. The ability to disassemble and reassemble VLPs in vitro and in bulk allows basic features of capsid assembly to be studied and also opens the possibility of packaging selected exogenous compounds within the reassembled VLPs.


2016 ◽  
Vol 4 (12) ◽  
pp. 2208-2218 ◽  
Author(s):  
Young-Dong Kim ◽  
Tae-Eun Park ◽  
Bijay Singh ◽  
Kye-Soo Cho ◽  
Jaiprakash N. Sangshetti ◽  
...  

A new polylactitol-based multifunctional gene carrier has shown low cytotoxicity, a high transfection efficiency, and liver cell targeting bothin vitroandin vivo.


MRS Bulletin ◽  
2005 ◽  
Vol 30 (9) ◽  
pp. 647-653 ◽  
Author(s):  
Philippe Barthélémy ◽  
Michel Camplo

AbstractThe design of safe and efficient gene transfer vectors remains one of the key challenges in gene therapy. Despite their remarkable transfection efficiency, viral vectors suffer from known safety issues. Consequently, significant research activity has been undertaken to develop nonviral approaches to gene transfer during the last decade. Numerous academic and industrial research groups are investigating synthetic cationic vectors, such as cationic amphiphiles, with the objective of increasing the gene transfection activity. Within this area, the development of functional synthetic vectors that respond to local environmental effects have met with success. These synthetic vectors are based on mechanistic principles and represent a significant departure from earlier systems. Many of these systems for gene delivery in vitro and in vivo are discussed in this article.


Nanoscale ◽  
2021 ◽  
Author(s):  
Nandini Bhandaru ◽  
Gagandeep Kaur ◽  
Apurva Panjla ◽  
Sandeep Verma

Controlling the morphology and nanostructure of self-assembled peptide molecules is of fundamental importance to chemistry and material science due to their bioactivity in both in vivo and in vitro settings,...


2019 ◽  
Author(s):  
Shubiao Zhang ◽  
Yinan Zhao ◽  
Yanyan Du ◽  
Yingnan Cao ◽  
Yang Xuan ◽  
...  

Abstract Background: During the course of gene transfection, the interaction kinetics between liposomes and DNA is speculated to play very important role for blood stability, cellular uptake, DNA release and finally transfection efficiency.Results: As cationic peptide liposomes exhibited great gene transfer activities both in vitro and in vivo, two peptide lipids, containing a tri-ornithine head (LOrn3) and a mono-ornithine head (LOrn1), were chosen to further clarify the process of liposome-mediated gene delivery in this study. The results show that the electrostatically-driven binding between DNA and liposomes reached nearly 100% at equilibrium, and high affinity of LOrn3 to DNA led to fast binding rate between them. The binding process between LOrn3 and DNA conformed to the kinetics equation: y = 1.663631 × exp(-0.003427x) + 6.278163. Compared to liposome LOrn1, the liposome LOrn3/DNA lipoplex exhibited a faster and more uniform uptake in Hela cells, as LOrn3 with a tri-ornithine peptide headgroup had a stronger interaction with the negatively charged cell membrane than LOrn1. The efficient endosomal escape of DNA from LOrn3 lipoplexes was facilitated by the acidity in late endosomes, resulting in broken carbamate bonds, as well as the “proton sponge effect” of the lipid.Conclusions: The interaction kinetics is a key factor for DNA transfection efficiency. This work provided insights into peptide lipid-mediated DNA delivery that could guide the development of the next generation of delivery systems for gene therapeutics.


Sign in / Sign up

Export Citation Format

Share Document