Resistive switching characteristics of all-solution-based Ag/TiO2/Mo-doped In2O3devices for non-volatile memory applications

2016 ◽  
Vol 4 (46) ◽  
pp. 10967-10972 ◽  
Author(s):  
Sujaya Kumar Vishwanath ◽  
Jihoon Kim

The all-solution-based memory devices demonstrated excellent bipolar switching behavior with a high resistive switching ratio of 103, excellent endurance of more than 1000 cycles, stable retention time greater than 104s at elevated temperatures, and fast programming speed of 250 ns.

2008 ◽  
Vol 25 (3) ◽  
pp. 1087-1090 ◽  
Author(s):  
Lv Hang-Bing ◽  
Zhou Peng ◽  
Fu Xiu-Feng ◽  
Yin Ming ◽  
Song Ya-Li ◽  
...  

2008 ◽  
Vol 20 (2) ◽  
pp. 025201 ◽  
Author(s):  
Tae-Wook Kim ◽  
Hyejung Choi ◽  
Seong-Hwan Oh ◽  
Minseok Jo ◽  
Gunuk Wang ◽  
...  

Nanoscale ◽  
2015 ◽  
Vol 7 (10) ◽  
pp. 4394-4399 ◽  
Author(s):  
Agnes Gubicza ◽  
Miklós Csontos ◽  
András Halbritter ◽  
György Mihály

The non-exponential dynamics of resistive switchings in Ag2S memristive nanojunctions provides an ideal basis for non-volatile memory applications.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Geetika Khurana ◽  
Nitu Kumar ◽  
Manish Chhowalla ◽  
James F. Scott ◽  
Ram S. Katiyar

Abstract Downscaling limitations and limited write/erase cycles in conventional charge-storage based non-volatile memories stimulate the development of emerging memory devices having enhanced performance. Resistive random-access memory (RRAM) devices are recognized as the next-generation memory devices for employment in artificial intelligence and neuromorphic computing, due to their smallest cell size, high write/erase speed and endurance. Unipolar and bipolar resistive switching characteristics in graphene oxide (GO) have been extensively studied in recent years, whereas the study of non-polar and complementary switching is scarce. Here we fabricated GO-based RRAM devices with gold nanoparticles (Au Nps). Diverse types of switching behavior are observed by changing the processing methods and device geometry. Tri-layer GO-based devices illustrated non-polar resistive switching, which is a combination of unipolar and bipolar switching. Five-layer GO-based devices depicted complementary resistive switching having the lowest current values ~12 µA; and this structure is capable of resolving the sneak path issue. Both devices show good retention and endurance performance. Au Nps in tri-layer devices assisted the conducting path, whereas in five-layer devices, Au Nps layer worked as common electrodes between co-joined cells. These GO-based devices with Au Nps comprising different configuration are vital for practical applications of emerging non-volatile resistive memories.


2011 ◽  
Vol 1337 ◽  
Author(s):  
S. Gorji Ghalamestani ◽  
L. Goux ◽  
D.E. Díaz-Droguett ◽  
D. Wouters ◽  
J. G. Lisoni

ABSTRACTWe investigated the resistive switching behavior of WOx films. WOx was obtained from the thermal oxidation of W thin layers. The parameters under investigation were the influence of the temperature (450-500 °C) and time (30-220 s) used to obtain the WOx on the resistive switching characteristics of Si\W\WOx\Metal_electrode ReRAM cells. The metal top electrodes (TE) tested were Pt, Ni, Cu and Au. The elemental composition and microstructure of the samples were characterized by means of elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectivity (XRR).Electrical measurement of the WOx-based memory elements revealed bipolar and unipolar switching and this depended upon the oxidation conditions and TE selected. Indeed, switching events were observed in WOx samples obtained either at 450 °C or 500 °C in time windows of 180-200 s and 30-60 s, respectively. Pt and Au TE promoted bipolar switching while unipolar behavior was observed with Ni TE only; no switching events were observed with Cu TE. Good switching characteristics seems not related to the overall thickness, crystallinity and composition of the oxide, but on the W6+/W5+ ratio present on the WOx surface, surface in contact with the TE material. Interestingly, W6+/W5+ ratio can be tuned through the oxidation conditions, showing a path for optimizing the properties of the WOx-based ReRAM cells.


COMMAD 2012 ◽  
2012 ◽  
Author(s):  
R.G. Elliman ◽  
M.N. Saleh ◽  
D.K. Venkatachalam ◽  
T-H. Kim ◽  
K. Belay ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (4) ◽  
pp. 275-280 ◽  
Author(s):  
Srinivasa Rao Singamaneni ◽  
John Prater ◽  
Bongmook Lee ◽  
Veena Misra ◽  
Jay Narayan

ABSTRACTFerroelectric materials such as BaTiO3 have been studied for emerging non-volatile memory applications. However, most of the previous work has been focused on this material when it was deposited on insulting oxide substrates such as SrTiO3. Unfortunately, this substrate is not suitable for CMOS-based microelectronics applications. This motivated us to carry out the present work. We have studied the resistive switching behavior in BaTiO3/La0.7Sr0.3MnO3 (BTO/LSMO) heterostructures integrated with semiconducting substrates Si (100) using MgO/TiN buffer layers by pulsed laser deposition. Current-Voltage (I-V) measurements were conducted on BTO (500nm)/LSMO (25nm) devices at 200K. We have observed a broad hysteresis in forward and reverse voltage sweeps which is an important property for memory applications. Secondly, the RON/ROFF ratio is estimated at ∼ 150, consistent with the reported numbers (30-100) in the literature. Thirdly, the device is stable at least up to 50 cycles. However, we found that hysteretic behavior was suppressed upon oxygen annealing of the device at 1 atmospheric pressure, 200° C for 1hr, inferring the important role of oxygen vacancies in the resistive switching behavior of BTO/LSMO device. Future work will focus on investigating the correlation between ferroelectricity and resistive switching in these devices using local probe technique piezo force microscopy (PFM) technique.


Sign in / Sign up

Export Citation Format

Share Document