hole structure
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 39)

H-INDEX

19
(FIVE YEARS 4)

Author(s):  
Xiaotao Xu ◽  
Xuesong Yuan ◽  
Hailong Li ◽  
Qingyun Chen ◽  
Yifan Zu ◽  
...  

2021 ◽  
pp. 57-66
Author(s):  
Meng Zhang ◽  
Zeqi Liu ◽  
Yajun Zhuang ◽  
Jie Han ◽  
Yin Xiang ◽  
...  

The vacuum seed metering device absorbs seeds by using the negative pressure generated by vacuum air flow. Therefore, it is of great significance to study the variation law of pyrolysis gas flow field to improve its seed metering performance. In this paper, the common disc and composite disc were selected as the research objects and tested on the indoor test-bed. The negative pressure was measured by U-type barometer, and the effects of fan speed, suction hole size, seed hole structure and air chamber thickness on the air flow field were studied. Firstly, the influence of fan rotation frequency on vacuum chamber negative pressure is studied, and the variation law of negative pressure in vacuum chamber and fan port of common disc and composite disc under the same frequency is compared. Secondly, the suction holes in the vacuum chamber were numbered, the negative pressure distribution of the suction holes was measured, and the influence of the number and diameter of the suction holes on the negative pressure of the vacuum chamber was studied. Finally, the negative pressure was measured at the distance of 0 to 10 mm from the suction hole to study the effect of seed hole structure on the air flow field. Moreover, increase the additional thickness of the vacuum chamber from 0 to 40 mm to study the influence of the chamber thickness on the distribution of the gas flow field. This paper makes a comprehensive experimental analysis on the influencing factors of air flow field of air suction seed metering device, necessary for future design of air suction seed metering device.


2021 ◽  
Vol 11 (23) ◽  
pp. 11149
Author(s):  
Jinlai Qi ◽  
Youping Gong ◽  
Honghao Chen ◽  
Junling He ◽  
Zizhou Qiao ◽  
...  

To solve the mismatch between the comprehensive mechanical properties of the spinal fusion cage and body, a fusion cage inner hole design method based on controllable TPMS-P to characterize the inner hole structure is proposed to solve the related problems. Firstly, the method of TPMS-P parameterization was used to construct the bionic porous structure model, which was designed as the linear gradual internal porous structure model. Then, we optimized the topology of the obtained porous structure implants to achieve precise control of the overall comprehensive mechanical properties of the fusion cage structure and obtain an optimized model that matched the mechanical properties of the fusion cage. To verify whether the method met the requirements, its simulation model was established. The porous structure was fabricated by selective laser processing, and its properties were tested and analyzed. The results show that its yield strength is 79.83 MPa, which match well with spinal bone tissue.


Author(s):  
Wen Wang ◽  
Xiaojie Deng ◽  
Dongqing Liu ◽  
Feng Luo ◽  
Haifeng Cheng ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2109 (1) ◽  
pp. 012022
Author(s):  
Dezhao Qin ◽  
Binxia Yuan ◽  
Jianben Liu ◽  
Yan Liu

Abstract In this paper, through the introduction of ABH related theory, a variety of optimized structures are established and compared. By changing the layout of holes in extruded profiles, the vibration characteristics of extruded profiles are studied by using the control variable method. It is found that for single extrusion profile, the through hole (the radius is 8mm to 10mm, the chamfer is 30 degrees) compared with the structure without holes, the natural frequency of the structure is increased by 7Hz from the first order to 20 Hz from the seventh order. For the spliced extruded profiles, the wedge-shaped hole structure with 8mm to 10mm has better vibration damping performance. The application of ABH structure can effectively improve the vibration characteristics of extruded profiles.


2021 ◽  
Vol 36 (32) ◽  
Author(s):  
M. Z. Bhatti ◽  
Z. Yousaf ◽  
T. Ashraf

This work probes the influence of charge field on the unique stellar structure, regarded as gravastar, under the corrections of [Formula: see text] theory, i.e. [Formula: see text] theory, where [Formula: see text] is named as Gauss–Bonnet invariant. The gravastar has also been recognized as an alternate candidate of black hole structure and is illustrated by three distinct regions termed as (1) the exterior (2) the intermediate thin shell (3) the interior domain. We discussed the mathematical solutions for each of three regions separately with the assistance of different equation-of-states (EoS). The exterior charged vacuum domain is expressed by the Reissner–Nordström solution. The central region is illustrated by the EoS, i.e. a positive pressure of ultra-relativistic matter is equal to the energy density. Whereas, the interior domain reflects that the negative pressure is equal to energy density and manifests a non-attractive force over the central spherical shell. We deduce that in the context of [Formula: see text] theory, the nonsingular charged model with distinct physical features, such as energy, length, entropy, is physically viable and consistent.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 828
Author(s):  
Zhaolong Li ◽  
Ye Dai

This paper presents a simulation and experimental study of the structure of small holes in GH4169 alloy electrolytic ally processed by tube electrodes with different characteristic power sources. It analyzes the multi-physical field coupling relationship of flow, temperature, and electric fields within the interstitial space. The results indicate that the tube electrode electrolytic processing of the GH4169 alloy small hole structure with a pulsed power supply has more uniform temperature and current density distribution within the gap, which is beneficial to the processing accuracy and smoothness of the small hole structure. Meanwhile, SEM was used to analyze the microscopic morphology of the electrode end surface during short-circuiting, and it was concluded that as the processing continued, the electrode end surface gradually produced a non-metallic oxide layer, which destroyed the electric field of the gap and affected the processing stability. The use of high-frequency positive and negative pulse power can effectively avoid the generation of a non-metallic oxide layer. Through the combination of simulation analysis and experimental verification, it is concluded that increasing electrolyte pressure in stages can effectively improve machining accuracy and stability. The interstitial current increases as the feed rate of the tool electrode increases, and the diameter of the machined small hole decreases as it increases.


Sign in / Sign up

Export Citation Format

Share Document