A new precursor to synthesize g-C3N4 with superior visible light absorption for photocatalytic application

2017 ◽  
Vol 7 (9) ◽  
pp. 1826-1830 ◽  
Author(s):  
Saisai Yuan ◽  
Qitao Zhang ◽  
Bin Xu ◽  
Sixiao Liu ◽  
Jinquan Wang ◽  
...  

Graphitic carbon nitride (g-C3N4) was synthesized with a new precursor (thiourea oxide) by a simple one-pot calcination method.

RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22652-22660
Author(s):  
Zengyu Cen ◽  
Yuna Kang ◽  
Rong Lu ◽  
Anchi Yu

H2O2 treated K-doped graphitic carbon nitride presents an enhanced visible light absorption, which is due to the electrostatic attraction between K ions and OOH ions inside graphitic carbon nitride.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 983 ◽  
Author(s):  
I. Neelakanta Reddy ◽  
N. Jayashree ◽  
V. Manjunath ◽  
Dongseob Kim ◽  
Jaesool Shim

Recently, the engineering of optical bandgaps and morphological properties of graphitic carbon nitride (g-C3N4) has attracted significant research attention for photoelectrodes and environmental remediation owing to its low-cost synthesis, availability of raw materials, and thermal physical–chemical stability. However, the photoelectrochemical activity of g-C3N4-based photoelectrodes is considerably poor due to their high electron–hole recombination rate, poor conductivity, low quantum efficiency, and active catalytic sites. Synthesized Ni metal-doped g-C3N4 nanostructures can improve the light absorption property and considerably increase the electron–hole separation and charge transfer kinetics, thereby initiating exceptionally enhanced photoelectrochemical activity under visible-light irradiation. In the present study, Ni dopant material was found to evince a significant effect on the structural, morphological, and optical properties of g-C3N4 nanostructures. The optical bandgap of the synthesized photoelectrodes was varied from 2.53 to 2.18 eV with increasing Ni dopant concentration. The optimized 0.4 mol% Ni-doped g-C3N4 photoelectrode showed a noticeably improved six-fold photocurrent density compared to pure g-C3N4. The significant improvement in photoanode performance is attributable to the synergistic effects of enriched light absorption, enhanced charge transfer kinetics, photoelectrode/aqueous electrolyte interface, and additional active catalytic sites for photoelectrochemical activity.


2019 ◽  
Vol 21 (5) ◽  
pp. 2318-2324 ◽  
Author(s):  
Jiawei Xue ◽  
Mamoru Fujitsuka ◽  
Tetsuro Majima

Extending the light absorption range of g-C3N4 by introducing N defects may be accompanied by some negative factors for the photocatalytic activity.


2015 ◽  
Vol 17 (1) ◽  
pp. 509-517 ◽  
Author(s):  
Jie Chen ◽  
Shaohua Shen ◽  
Po Wu ◽  
Liejin Guo

Nitrogen-doped CeOx nanoparticles modified g-C3N4 was successfully prepared via a one-pot method, which showed significantly enhanced photocatalytic activity for hydrogen generation under visible light compared to the pure g-C3N4 photocatalyst.


2021 ◽  
Author(s):  
Trishamoni Kashyap ◽  
Palash Jyoti Boruah ◽  
Heremba Bailung ◽  
Dirtha Sanyal ◽  
Biswajit Choudhury

Defect-activated ultrathin graphitic carbon nitride nanosheets (g-C3N4) show an enhanced visible light absorption, better charge-separation, and facile charge transport properties. These are requisite for the designing of an active photocatalyst....


Sign in / Sign up

Export Citation Format

Share Document