One-step large-scale highly active g-C3N4 nanosheets for efficient sunlight-driven photocatalytic hydrogen production

2017 ◽  
Vol 46 (32) ◽  
pp. 10678-10684 ◽  
Author(s):  
Waheed Iqbal ◽  
Bocheng Qiu ◽  
Juying Lei ◽  
Lingzhi Wang ◽  
Jinlong Zhang ◽  
...  

The development of highly active, cost-effective, environmentally friendly and stable g-C3N4 based photocatalysts for H2 evolution is one of the most anticipated potential pathways for future hydrogen utilization.

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 929 ◽  
Author(s):  
Sajjad Hussain ◽  
Kamran Akbar ◽  
Dhanasekaran Vikraman ◽  
Rana Afzal ◽  
Wooseok Song ◽  
...  

To find an effective alternative to scarce, high-cost noble platinum (Pt) electrocatalyst for hydrogen evolution reaction (HER), researchers are pursuing inexpensive and highly efficient materials as an electrocatalyst for large scale practical application. Layered transition metal dichalcogenides (TMDCs) are promising candidates for durable HER catalysts due to their cost-effective, highly active edges and Earth-abundant elements to replace Pt electrocatalysts. Herein, we design an active, stable earth-abundant TMDCs based catalyst, WS(1−x)Sex nanoparticles-decorated onto a 3D porous graphene/Ni foam. The WS(1−x)Sex/graphene/NF catalyst exhibits fast hydrogen evolution kinetics with a moderate overpotential of ~−93 mV to drive a current density of 10 mA cm−2, a small Tafel slope of ~51 mV dec−1, and a long cycling lifespan more than 20 h in 0.5 M sulfuric acid, which is much better than WS2/NF and WS2/graphene/NF catalysts. Our outcomes enabled a way to utilize the TMDCs decorated graphene and precious-metal-free electrocatalyst as mechanically robust and electrically conductive catalyst materials.


Author(s):  
Xiaoqiang Zhan ◽  
Zhi Fang ◽  
Bing Li ◽  
Haitao Zhang ◽  
Leyao Xu ◽  
...  

Highly-active heterojunctions hold the pivotal function in photocatalytic hydrogen evolution reaction (HER). Herein, Ta3N5@ReS2 photocatalysts are rationally designed via the combination of template-assisted, hydrothermal and solution-adsorption processes, in which few...


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 656 ◽  
Author(s):  
Hee Hwang ◽  
Younghoon Lee ◽  
Choongyeop Lee ◽  
Youngsuk Nam ◽  
Jinhyoung Park ◽  
...  

The oxidation of metal microparticles (MPs) in a polymer film yields a mesoporous highly-deformable composite polymer for enhancing performance and creating a gapless structure of triboelectric nanogenerators (TENGs). This is a one-step scalable synthesis for developing large-scale, cost-effective, and light-weight mesoporous polymer composites. We demonstrate mesoporous aluminum oxide (Al2O3) polydimethylsiloxane (PDMS) composites with a nano-flake structure on the surface of Al2O3 MPs in pores. The porosity of mesoporous Al2O3-PDMS films reaches 71.35% as the concentration of Al MPs increases to 15%. As a result, the film capacitance is enhanced 1.8 times, and TENG output performance is 6.67-times greater at 33.3 kPa and 4 Hz. The pressure sensitivity of 6.71 V/kPa and 0.18 μA/kPa is determined under the pressure range of 5.5–33.3 kPa. Based on these structures, we apply mesoporous Al2O3-PDMS film to a gapless TENG structure and obtain a linear pressure sensitivity of 1.00 V/kPa and 0.02 μA/kPa, respectively. Finally, we demonstrate self-powered safety cushion sensors for monitoring human sitting position by using gapless TENGs, which are developed with a large-scale and highly-deformable mesoporous Al2O3-PDMS film with dimensions of 6 × 5 pixels (33 × 27 cm2).


2020 ◽  
Vol 6 (4) ◽  
pp. 63
Author(s):  
Henri Perez ◽  
Mathieu Frégnaux ◽  
Emeline Charon ◽  
Arnaud Etcheberry ◽  
Olivier Sublemontier

Recently, we reported the use of CO2 laser pyrolysis for the synthesis of promising Fe/C/N electrocatalysts for Oxygen Reduction Reaction (ORR) in fuel cells. The set-up used single laser pyrolysis of an aerosolized solution of iron acetylacetonate in toluene with ammonia, both as laser energy transfer agent and nitrogen source. In the present paper, we investigate the effect of a second ammonia promoted CO2 laser pyrolysis on the feature and ORR activity of Fe/C/N electrocatalysts. Indeed, compared to single pyrolysis, the second ammonia promoted CO2 laser pyrolysis could be an interesting way to synthesize in one-step performing ORR electrocatalysts on a large scale. For this comparison, a two-stage reactor was built, allowing both single ammonia-induced CO2 laser pyrolysis as reported previously or double ammonia-induced CO2 laser pyrolysis. In the latter configuration, the catalyst nanopowder flow is formed at the first stage of the reactor, then mixed with a second ammonia flow and allowed to cross a second CO2 laser beam, thus undergoing a second ammonia-induced CO2 laser pyrolysis before being collected on filters. It is found that the second ammonia-induced CO2 laser pyrolysis significantly improves the ORR performances of the materials prepared by single CO2 laser pyrolysis. The effect is demonstrated for three different catalysts for which the onset potentials for the ORR from single-stage to double-stage configuration increase from 625 mV to 845 mV, 790 mV to 860 mV, and 800 mV to 885 mV, respectively. The selectivity of the ORR was determined at 600 mV/SHE and lie between 3.41 and 3.72. These promising performances suggesting potentialities for the one-step formation of highly active Fe/C/N ORR electrocatalysts are discussed, based on results of surface analysis by XPS, specific surface area measurements, and Raman spectroscopy.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2449
Author(s):  
Shiliang Heng ◽  
Lei Li ◽  
Weiwei Li ◽  
Haiyan Li ◽  
Jingyu Pang ◽  
...  

The development of high-efficiency, recyclable, and inexpensive photocatalysts for water splitting for hydrogen production is of great significance to the application of solar energy. Herein, a series of graphene-decorated polyoxoniobate photocatalysts Nb6/PPy-RGO (Nb6 = K7HNb6O19, RGO = reduced graphene oxide, PPy = polypyrrole), with the bridging effect of polypyrrole were prepared through a simple one-step solvothermal method, which is the first example of polyoxoniobate-graphene-based nanocomposites. The as-fabricated photocatalyst showed a photocatalytic H2 evolution activity without any co-catalyst. The rate of 1038 µmol g−1 in 5 h under optimal condition is almost 43 times higher than that of pure K7HNb6O19·13H2O. The influencing factors for photocatalysts in photocatalytic hydrogen production under simulated sunlight were studied in detail and the feasible mechanism is presented in this paper. These results demonstrate that Nb6O19 acts as the main catalyst and electron donor, RGO provides active sites, and PPy acted as an electronic bridge to extend the lifetime of photo-generated carriers, which are crucial factors for photocatalytic H2 production.


Solar Energy ◽  
2006 ◽  
Author(s):  
Christian Sattler ◽  
Martin Roeb ◽  
Nathalie Monnerie ◽  
Daniela Graf ◽  
Stephan Mo¨ller

The potential of hydrogen to be the energy carrier of the future is widely accepted. Today more than 90% of hydrogen is produced by cost effective technologies from fossil sources mainly by steam reforming of natural gas and coal gasification. But hydrogen is not important as an energy carrier yet — it is mainly a chemical. To finally benefit from hydrogen as a fuel it has to be produced greenhouse gas free in large quantities. Therefore these two tasks have to be connected by a strategy incorporating transition steps. Solar thermal processes have the potential to be the most effective alternatives for large scale hydrogen production in the future. Therefore high temperature solar technologies are under development for the different steps on the stair to renewable hydrogen. This paper discusses the strategy based on the efficiencies of the chosen solar processes incorporating carbonaceous materials as well as processes based on water splitting. And the availability of the technologies. A comparison with the most common industrial processes shall demonstrate which endeavors have to be done to establish renewable hydrogen as a fuel.


2019 ◽  
Vol 11 (29) ◽  
pp. 25844-25853 ◽  
Author(s):  
Juan Yao ◽  
Yaru Zheng ◽  
Xin Jia ◽  
Lixuan Duan ◽  
Qiang Wu ◽  
...  

2015 ◽  
Vol 3 (33) ◽  
pp. 16941-16947 ◽  
Author(s):  
Qiudi Yue ◽  
Yangyang Wan ◽  
Zijun Sun ◽  
Xiaojun Wu ◽  
Yupeng Yuan ◽  
...  

The present study shows that MoP is a stable and highly active cocatalyst to promote photocatalytic H2 production from water when attached on the semiconductor surface.


Sign in / Sign up

Export Citation Format

Share Document