The influence of the explosive decompression in steam-explosion pretreatment on the enzymatic digestibility of different biomasses

2017 ◽  
Vol 202 ◽  
pp. 269-280 ◽  
Author(s):  
Christoph-M. Seidel ◽  
Thomas Pielhop ◽  
Michael H. Studer ◽  
Philipp Rudolf von Rohr

For the production of second generation biofuels from lignocellulosic biomass, pretreatment of the biomass feedstock is necessary to overcome its recalcitrance in order to gain fermentable sugars. Due to many reasons, steam-explosion pretreatment is currently the most commonly used pretreatment method for lignocellulosic biomass on a commercial scale [S. Brethauer and M. H. Studer, CHIMIA, 2015, 69, 572–581]. In contrast to others, we showed that the explosive decompression at the end of this pretreatment step can have a positive influence on the enzymatic digestibility of softwood, especially in combination with high enzyme dosages [T. Pielhop, et al., Biotechnology for Biofuels, 2016, 9, 152]. In this study, the influence of the explosive decompression on the enzymatic digestibility of hardwood and herbaceous plants was systematically studied. Beech and corn stover were pretreated under different pretreatment conditions and enzymatically hydrolysed with different enzyme dosages. The maximum enhancement of the digestibility of corn stover was 16.53% after a 2.5 min pretreatment step at 15 barg steam pressure. For beech, a maximum relative enhancement of 58.29% after a 10 min pretreatment step at 15 barg steam pressure could be reached. With this, we show that the explosive decompression can also enhance the enzymatic cellulose digestibility of hardwood and herbaceous plants.

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3653 ◽  
Author(s):  
Robert Balan ◽  
Andrzej Antczak ◽  
Simone Brethauer ◽  
Tomasz Zielenkiewicz ◽  
Michael H. Studer

Steam explosion is a well-known process to pretreat lignocellulosic biomass in order to enhance sugar yields in enzymatic hydrolysis, but pretreatment conditions have to be optimized individually for each material. In this study, we investigated how the results of a pretreatment optimization procedure are influenced by the chosen reaction conditions in the enzymatic hydrolysis. Beechwood was pretreated by steam explosion and the resulting biomass was subjected to enzymatic hydrolysis at glucan loadings of 1% and 5% employing either washed solids or the whole pretreatment slurry. For enzymatic hydrolysis in both reaction modes at a glucan loading of 1%, the glucose yields markedly increased with increasing severity and with increasing pretreatment temperature at identical severities and maximal values were reached at a pretreatment temperature of 230 °C. However, the optimal severity was 5.0 for washed solids enzymatic hydrolysis, but only 4.75 for whole slurry enzymatic hydrolysis. When the glucan loading was increased to 5%, glucose yields hardly increased for pretreatment temperatures between 210 and 230 °C at a given severity, and a pretreatment temperature of 220 °C was sufficient under these conditions. Consequently, it is important to precisely choose the desired conditions of the enzymatic hydrolysis reaction, when aiming to optimize the pretreatment conditions for a certain biomass.


2021 ◽  
Vol 9 ◽  
Author(s):  
Isabelle Ziegler-Devin ◽  
Laurent Chrusciel ◽  
Nicolas Brosse

Steam Explosion (SE) is one of the most efficient and environmentally friendly processes for the pretreatment of lignocellulosic biomass. It is an important tool for the development of the biorefinery concept to mitigate the recalcitrance of biomass. However, the two distinct steps of SE, steam cracking and explosive decompression, leading to the breakdown of the lignocellulosic matrix have generally been studied in empiric ways and clarification are needed. This mini-review provides new insights and recommendations regarding the properties of subcritical water, process modeling and the importance of the depressurization rate.


2014 ◽  
Vol 166 ◽  
pp. 368-372 ◽  
Author(s):  
Chen-Guang Liu ◽  
Li-Yang Liu ◽  
Li-Han Zi ◽  
Xin-Qing Zhao ◽  
You-Hai Xu ◽  
...  

2020 ◽  
Vol 157 ◽  
pp. 112907
Author(s):  
Fengqin Wang ◽  
Hongli Dong ◽  
Morteza Hassanpour ◽  
Ke Zhang ◽  
Hui Xie ◽  
...  

2012 ◽  
Vol 06 ◽  
pp. 745-750
Author(s):  
AI ASAKAWA ◽  
CHIZURU SASAKI ◽  
CHIKAKO ASADA ◽  
YOSHITOSHI NAKAMURA

Waste Shiitake (Lentinula edodes) mushroom medium, a lignocellulosic aglicultural residue, was evaluated as a fermentable substrate. 87% of the fermentable sugars remained in the waste mushroom medium. The sugar yield of the waste mushroom medium (46.3%) was higher than that of raw mushroom medium (20.3%) after 48 h of enzymatic saccharification by Meicelase because L. edodes changed wood structure. These results indicated that the waste mushroom medium is a suitable substrate for fermentation. Next, the efficient ethanol production using steam explosion pretreatment was studied. After 30 h of simultaneous saccharification and fermentation (SSF) using Meicelase and Saccharomyces cerevisiae AM12, 20.0 g/L ethanol was produced from 100 g/L water-insoluble residue of the waste mushroom medium treated at a steam pressure of 20 atm and a steaming time of 5 min. This corresponded to an ethanol yield of 77.0% of the theoretical, i.e. 14.7 g of ethanol obtained from 100 g of waste mushroom medium.


2009 ◽  
Vol 25 ◽  
pp. S275 ◽  
Author(s):  
F. Zimbardi ◽  
E. Viola ◽  
F. Nanna ◽  
G. Cardinale ◽  
A. Villone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document