scholarly journals Steam Explosion Pretreatment of Lignocellulosic Biomass: A Mini-Review of Theorical and Experimental Approaches

2021 ◽  
Vol 9 ◽  
Author(s):  
Isabelle Ziegler-Devin ◽  
Laurent Chrusciel ◽  
Nicolas Brosse

Steam Explosion (SE) is one of the most efficient and environmentally friendly processes for the pretreatment of lignocellulosic biomass. It is an important tool for the development of the biorefinery concept to mitigate the recalcitrance of biomass. However, the two distinct steps of SE, steam cracking and explosive decompression, leading to the breakdown of the lignocellulosic matrix have generally been studied in empiric ways and clarification are needed. This mini-review provides new insights and recommendations regarding the properties of subcritical water, process modeling and the importance of the depressurization rate.

2017 ◽  
Vol 202 ◽  
pp. 269-280 ◽  
Author(s):  
Christoph-M. Seidel ◽  
Thomas Pielhop ◽  
Michael H. Studer ◽  
Philipp Rudolf von Rohr

For the production of second generation biofuels from lignocellulosic biomass, pretreatment of the biomass feedstock is necessary to overcome its recalcitrance in order to gain fermentable sugars. Due to many reasons, steam-explosion pretreatment is currently the most commonly used pretreatment method for lignocellulosic biomass on a commercial scale [S. Brethauer and M. H. Studer, CHIMIA, 2015, 69, 572–581]. In contrast to others, we showed that the explosive decompression at the end of this pretreatment step can have a positive influence on the enzymatic digestibility of softwood, especially in combination with high enzyme dosages [T. Pielhop, et al., Biotechnology for Biofuels, 2016, 9, 152]. In this study, the influence of the explosive decompression on the enzymatic digestibility of hardwood and herbaceous plants was systematically studied. Beech and corn stover were pretreated under different pretreatment conditions and enzymatically hydrolysed with different enzyme dosages. The maximum enhancement of the digestibility of corn stover was 16.53% after a 2.5 min pretreatment step at 15 barg steam pressure. For beech, a maximum relative enhancement of 58.29% after a 10 min pretreatment step at 15 barg steam pressure could be reached. With this, we show that the explosive decompression can also enhance the enzymatic cellulose digestibility of hardwood and herbaceous plants.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3653 ◽  
Author(s):  
Robert Balan ◽  
Andrzej Antczak ◽  
Simone Brethauer ◽  
Tomasz Zielenkiewicz ◽  
Michael H. Studer

Steam explosion is a well-known process to pretreat lignocellulosic biomass in order to enhance sugar yields in enzymatic hydrolysis, but pretreatment conditions have to be optimized individually for each material. In this study, we investigated how the results of a pretreatment optimization procedure are influenced by the chosen reaction conditions in the enzymatic hydrolysis. Beechwood was pretreated by steam explosion and the resulting biomass was subjected to enzymatic hydrolysis at glucan loadings of 1% and 5% employing either washed solids or the whole pretreatment slurry. For enzymatic hydrolysis in both reaction modes at a glucan loading of 1%, the glucose yields markedly increased with increasing severity and with increasing pretreatment temperature at identical severities and maximal values were reached at a pretreatment temperature of 230 °C. However, the optimal severity was 5.0 for washed solids enzymatic hydrolysis, but only 4.75 for whole slurry enzymatic hydrolysis. When the glucan loading was increased to 5%, glucose yields hardly increased for pretreatment temperatures between 210 and 230 °C at a given severity, and a pretreatment temperature of 220 °C was sufficient under these conditions. Consequently, it is important to precisely choose the desired conditions of the enzymatic hydrolysis reaction, when aiming to optimize the pretreatment conditions for a certain biomass.


2009 ◽  
Vol 25 ◽  
pp. S275 ◽  
Author(s):  
F. Zimbardi ◽  
E. Viola ◽  
F. Nanna ◽  
G. Cardinale ◽  
A. Villone ◽  
...  

Author(s):  
Johanna Olsson ◽  
Michael Persson ◽  
Mats Galbe ◽  
Ola Wallberg ◽  
Ann-Sofi Jönsson

AbstractEfficient fractionation of lignocellulosic biomass is an important step toward the replacement of fossil-based products. However, the utilisation of all of the components in biomass requires various fractionation techniques. One promising process configuration is to apply steam explosion for the recovery of hemicelluloses and a subsequent hydrotropic extraction step for the delignification of the remaining solids. In this work, the influence of residence time, temperature and biomass loading on lignin recovery from birch using sodium xylene sulphonate as a hydrotrope was investigated. Our results show that residence time, temperature and biomass loading correlate positively with lignin extraction, but the effects of these parameters were limited. Furthermore, when steam explosion was implemented as the initial step, hydrotropic extraction could be performed even at room temperature, yielding a lignin extraction of 50%. Also, hydrothermal degradation of the material was necessary for efficient delignification with sodium xylene sulphonate, regardless of whether it occurs during steam explosion pretreatment or is achieved at high temperatures during the hydrotropic extraction.


Sign in / Sign up

Export Citation Format

Share Document