scholarly journals Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading

2018 ◽  
Vol 20 (3) ◽  
pp. 567-582 ◽  
Author(s):  
Kristiina Iisa ◽  
David J. Robichaud ◽  
Michael J. Watson ◽  
Jeroen ten Dam ◽  
Abhijit Dutta ◽  
...  

Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies.

2021 ◽  
Vol 14 ◽  
pp. 1-11
Author(s):  
Haryanti Yahaya ◽  
Rozzeta Dollah ◽  
Norsahika Mohd Basir ◽  
Rohit Karnik ◽  
Halimaton Hamdan

Oil palm empty fruit bunch (EFB) biomass is a potential source of renewable energy. Catalytic fast-pyrolysis batch process was initially performed to convert oil palm EFB into bio-oil, followed by its refinement to jet bio-fuel. Crystalline zeolites A and Y; synthesised from rice husk ash (RHA), were applied as heterogeneous catalysts. The catalytic conversion of oil palm EFB to bio-oil was conducted at a temperature range of 320-400°C with zeolite A catalyst loadings of 0.6 - 3.0 wt%. The zeolite catalysts were characterised by XRD, FTIR and FESEM. The bio-oil and jet bio-fuel products were analysed using GC-MS and FTIR. The batch fast-pyrolysis reaction was optimised at 400°C with a catalyst loading of 1.0 wt%, produced 42.7 wt% yields of liquid bio-oil, 35.4 wt% char and 21.9 wt% gaseous products. Analysis by GCMS indicates the compound distribution of the liquid bio-oil are as follows: hydrocarbons (23%), phenols (61%), carboxylic acids (0.7%), ketones (2.7%), FAME (7.7%) and alcohols (0.8%). Further refinement of the liquid bio-oil by catalytic hydrocracking over zeolite Y produced jet bio-fuel, which contains 63% hydrocarbon compounds (C8-C18) and 16% of phenolic compounds.


2018 ◽  
Vol 37 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Ismail Cem Kantarli ◽  
Stylianos D Stefanidis ◽  
Konstantinos G Kalogiannis ◽  
Angelos A Lappas

The objective of this study was to examine the potential of poultry wastes to be used as feedstock in non-catalytic and catalytic fast pyrolysis processes, which is a continuation of our previous research on their conversion into biofuel via slow pyrolysis and hydrothermal conversion. Both poultry meal and poultry litter were examined, initially in a fixed bed bench-scale reactor using ZSM-5 and MgO as catalysts. Pyrolysis of poultry meal yielded high amounts of bio-oil, while pyrolysis of poultry litter yielded high amounts of solid residue owing to its high ash content. MgO was found to be more effective for the deoxygenation of bio-oil and reduction of undesirable compounds, by converting mainly the acids in the pyrolysis vapours of poultry meal into aliphatic hydrocarbons. ZSM-5 favoured the formation of both aromatic compounds and undesirable nitrogenous compounds. Overall, all bio-oil samples from the pyrolysis of poultry wastes contained relatively high amounts of nitrogen compared with bio-oils from lignocellulosic biomass, ca. 9 wt.% in the case of poultry meal and ca. 5–8 wt.% in the case of poultry litter. This was attributed to the high nitrogen content of the poultry wastes, unlike that of lignocellulosic biomass. Poultry meal yielded the highest amount of bio-oil and was selected as optimum feedstock to be scaled-up in a semi-pilot scale fluidised bed biomass pyrolysis unit with the ZSM-5 catalyst. Pyrolysis in the fluidised bed reactor was more efficient for deoxygenation of the bio-oil vapours, as evidenced from the lower oxygen content of the bio-oil.


2018 ◽  
Vol 5 (11) ◽  
pp. 23456-23465
Author(s):  
Suchithra Thangalazhy-Gopakumar ◽  
Chi Wei Lee ◽  
Suyin Gan ◽  
Hoon Kiat Ng ◽  
Lai Yee Lee

ACS Omega ◽  
2021 ◽  
Author(s):  
Mudassir Hussain Tahir ◽  
Rana Muhammad Irfan ◽  
Muhammad Bilal Hussain ◽  
Hesham Alhumade ◽  
Yusuf Al-Turki ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Abrar Inayat ◽  
Ashfaq Ahmed ◽  
Rumaisa Tariq ◽  
Ammara Waris ◽  
Farrukh Jamil ◽  
...  

Biomass pyrolysis is one of the beneficial sources of the production of sustainable bio-oil. Currently, marketable bio-oil plants are scarce because of the complex operations and lower profits. Therefore, it is necessary to comprehend the relationship between technological parameters and economic practicality. This review outlines the technical and economical routine to produce bio-oils from various biomass by fast pyrolysis. Explicit pointers were compared, such as production cost, capacity, and biomass type for bio-oil production. The bio-oil production cost is crucial for evaluating the market compatibility with other biofuels available. Different pretreatments, upgrades and recycling processes influenced production costs. Using an energy integration strategy, it is possible to produce bio-oil from biomass pyrolysis. The findings of this study might lead to bio-oil industry-related research aimed at commercializing the product.


BioResources ◽  
2014 ◽  
Vol 9 (3) ◽  
Author(s):  
Zhi-Bo Zhang ◽  
Qiang Lu ◽  
Xiao-Ning Ye ◽  
Ling-Ping Xiao ◽  
Chang-Qing Dong ◽  
...  

Author(s):  
Nuttapan Promsampao ◽  
Nuwong Chollacoop ◽  
Adisak Pattiya

Ex-situ catalytic fast pyrolysis (ex-CFP) of biomass applying ZSM-5 catalysts is an effective method for deoxygenating the pyrolysis vapour, thus producing low-oxygen bio-oil in a single step. The catalysts deactivate...


Sign in / Sign up

Export Citation Format

Share Document