scholarly journals Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function

2017 ◽  
Vol 34 (9) ◽  
pp. 1141-1172 ◽  
Author(s):  
Jeffrey D. Rudolf ◽  
Chin-Yuan Chang ◽  
Ming Ma ◽  
Ben Shen

This review catalogues functionally characterized P450s fromStreptomycesand discusses their sequences, structures, and functions in natural products biosynthesis.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huihui Li ◽  
Mingzhe Xie ◽  
Yan Wang ◽  
Ludong Yang ◽  
Zhi Xie ◽  
...  

AbstractriboCIRC is a translatome data-oriented circRNA database specifically designed for hosting, exploring, analyzing, and visualizing translatable circRNAs from multi-species. The database provides a comprehensive repository of computationally predicted ribosome-associated circRNAs; a manually curated collection of experimentally verified translated circRNAs; an evaluation of cross-species conservation of translatable circRNAs; a systematic de novo annotation of putative circRNA-encoded peptides, including sequence, structure, and function; and a genome browser to visualize the context-specific occupant footprints of circRNAs. It represents a valuable resource for the circRNA research community and is publicly available at http://www.ribocirc.com.


2014 ◽  
Vol 10 ◽  
pp. 1228-1232 ◽  
Author(s):  
Jens Schmidt ◽  
Zeinab Khalil ◽  
Robert J Capon ◽  
Christian B W Stark

The heronapyrroles A–C have first been isolated from a marine-derived Streptomyces sp. (CMB-0423) in 2010. Structurally, these natural products feature an unusual nitropyrrole system to which a partially oxidized farnesyl chain is attached. The varying degree of oxidation of the sesquiterpenyl subunit in heronapyrroles A–C provoked the hypothesis that there might exist other hitherto unidentified metabolites. On biosynthetic grounds a mono-tetrahydrofuran-diol named heronapyrrole D appeared a possible candidate. We here describe a short asymmetric synthesis of heronapyrrole D, its detection in cultivations of CMB-0423 and finally the evaluation of its antibacterial activity. We thus demonstrate that biosynthetic considerations and the joint effort of synthetic and natural product chemists can result in the identification of new members of a rare class of natural products.


Structure ◽  
1995 ◽  
Vol 3 (1) ◽  
pp. 41-62 ◽  
Author(s):  
Charles A Hasemann ◽  
Ravi G Kurumbail ◽  
Sekhar S Boddupalli ◽  
Julian A Peterson ◽  
Johann Deisenhofer

mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Mark C. Walker

ABSTRACT Mark Walker studies the biosynthesis and engineering of bacterial natural products with the long-term goal of identifying new antibiotic compounds. In this mSphere of Influence, he reflects on how “Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A” by K. Yamanaka, K. A. Reynolds, R. D. Kersten, K. S. Ryan, et al. (Proc Natl Acad Sci USA 111:1957–1962, 2014, https://doi.org/10.1073/pnas.1319584111) impacted his thinking on using synthetic biology approaches to study natural product biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document