scholarly journals The International Conference of Natural Product Biosynthesis (ICNPB, 8th US–Japan seminar on the Biosynthesis of Natural Products)

2012 ◽  
Vol 65 (11) ◽  
pp. 587-590
Author(s):  
Takayoshi Awakawa
2014 ◽  
Vol 10 ◽  
pp. 1228-1232 ◽  
Author(s):  
Jens Schmidt ◽  
Zeinab Khalil ◽  
Robert J Capon ◽  
Christian B W Stark

The heronapyrroles A–C have first been isolated from a marine-derived Streptomyces sp. (CMB-0423) in 2010. Structurally, these natural products feature an unusual nitropyrrole system to which a partially oxidized farnesyl chain is attached. The varying degree of oxidation of the sesquiterpenyl subunit in heronapyrroles A–C provoked the hypothesis that there might exist other hitherto unidentified metabolites. On biosynthetic grounds a mono-tetrahydrofuran-diol named heronapyrrole D appeared a possible candidate. We here describe a short asymmetric synthesis of heronapyrrole D, its detection in cultivations of CMB-0423 and finally the evaluation of its antibacterial activity. We thus demonstrate that biosynthetic considerations and the joint effort of synthetic and natural product chemists can result in the identification of new members of a rare class of natural products.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Mark C. Walker

ABSTRACT Mark Walker studies the biosynthesis and engineering of bacterial natural products with the long-term goal of identifying new antibiotic compounds. In this mSphere of Influence, he reflects on how “Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A” by K. Yamanaka, K. A. Reynolds, R. D. Kersten, K. S. Ryan, et al. (Proc Natl Acad Sci USA 111:1957–1962, 2014, https://doi.org/10.1073/pnas.1319584111) impacted his thinking on using synthetic biology approaches to study natural product biosynthesis.


2020 ◽  
Vol 37 (4) ◽  
pp. 566-599 ◽  
Author(s):  
Marc G. Chevrette ◽  
Karina Gutiérrez-García ◽  
Nelly Selem-Mojica ◽  
César Aguilar-Martínez ◽  
Alan Yañez-Olvera ◽  
...  

We review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial natural products biosynthesis, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits.


2012 ◽  
Vol 78 (8) ◽  
pp. 2497-2504 ◽  
Author(s):  
Ming Jiang ◽  
Gregory Stephanopoulos ◽  
Blaine A. Pfeifer

ABSTRACTEscherichia colioffers unparalleled engineering capacity in the context of heterologous natural product biosynthesis. However, as with other heterologous hosts, cellular metabolism must be designed or redesigned to support final compound formation. This task is at once complicated and aided by the fact that the cell does not natively produce an abundance of natural products. As a result, the metabolic engineer avoids complicated interactions with native pathways closely associated with the outcome of interest, but this convenience is tempered by the need to implement the required metabolism to allow functional biosynthesis. This review focuses on engineeringE. colifor the purpose of polyisoprene formation, as it is related to isoprenoid compounds currently being pursued through a heterologous approach. In particular, the review features the compound paclitaxel and early efforts to design and overproduce intermediates throughE. coli.


2016 ◽  
Vol 69 (2) ◽  
pp. 129 ◽  
Author(s):  
John A. Kalaitzis ◽  
Shane D. Ingrey ◽  
Rocky Chau ◽  
Yvette Simon ◽  
Brett A. Neilan

Historically microbial natural product biosynthesis pathways were elucidated mainly by isotope labelled precursor directed feeding studies. Now the genetics underpinning the assembly of microbial natural products biosynthesis is so well understood that some pathways and their products can be predicted from DNA sequences alone. The association between microbial natural products and their biosynthesis gene clusters is now driving the field of ‘genetics guided natural product discovery’. This account overviews our research into cyanotoxin biosynthesis before the genome sequencing era through to some recent discoveries resulting from the mining of Australian biota for natural product biosynthesis pathways.


2017 ◽  
Vol 34 (9) ◽  
pp. 1061-1089 ◽  
Author(s):  
Xingwang Zhang ◽  
Shengying Li

This review focuses on unusual P450 reactions related to new chemistry, skeleton construction, structure re-shaping, and protein–protein interactions in natural product biosynthesis, which play significant roles in chemical space expansion for natural products.


2017 ◽  
Vol 34 (9) ◽  
pp. 1141-1172 ◽  
Author(s):  
Jeffrey D. Rudolf ◽  
Chin-Yuan Chang ◽  
Ming Ma ◽  
Ben Shen

This review catalogues functionally characterized P450s fromStreptomycesand discusses their sequences, structures, and functions in natural products biosynthesis.


2011 ◽  
Vol 6 (2) ◽  
pp. 1934578X1100600
Author(s):  
Jia Zeng ◽  
Jonathan Valiente ◽  
Jixun Zhan

Biotransformation is an effective method to generate new derivatives from natural products. Combination of various enzymes or whole-cell biocatalysts creates new opportunities for natural product biosynthesis. Dihydroresorcylide (1) is a phytotoxic macrolactone from Acremonium aeae. It was first chlorinated at C-11 by an engineered Escherichia coli BL21-CodonPlus (DE3)-RIL/pJZ54 strain that overexpresses a fungal flavin-dependent halogenase, and subsequently glycosylated at 12-OH by Beauveria bassiana ATCC 7159, giving rise to a novel derivative, 11-chloro-4′- O-methyl-12- O-β-D-glucosyl-dihydroresorcylide (3). Although 1 can be converted into a new 4′- O-methyl-glucosylated derivative 4 by B. bassiana, this product cannot be further chlorinated by E. coli BL21-CodonPlus (DE3)-RIL/pJZ54 to afford 3. The sequence of these two biotransformation steps was thus restricted and not interchangeable. This sequential biotransformation approach can be applied to other structurally similar natural products to create novel derivatives.


2010 ◽  
Vol 77 (2) ◽  
pp. 400-406 ◽  
Author(s):  
Hiroyasu Onaka ◽  
Yukiko Mori ◽  
Yasuhiro Igarashi ◽  
Tamotsu Furumai

ABSTRACTNatural products produced by microorganisms are important starting compounds for drug discovery. Secondary metabolites, including antibiotics, have been isolated from differentStreptomycesspecies. The production of these metabolites depends on the culture conditions. Therefore, the development of a new culture method can facilitate the discovery of new natural products. Here, we show that mycolic acid-containing bacteria can influence the biosynthesis of cryptic natural products inStreptomycesspecies. The production of red pigment byStreptomyces lividansTK23 was induced by coculture withTsukamurella pulmonisTP-B0596, which is a mycolic acid-containing bacterium. Only living cells induced this pigment production, which was not mediated by any substances.T.pulmoniscould induce natural-product synthesis in otherStreptomycesstrains too: it altered natural-product biosynthesis in 88.4% of theStreptomycesstrains isolated from soil. The other mycolic acid-containing bacteria,Rhodococcus erythropolisandCorynebacterium glutamicum, altered biosynthesis in 87.5 and 90.2% of theStreptomycesstrains, respectively. The coculture broth ofT.pulmonisandStreptomyces endusS-522 contained a novel antibiotic, which we named alchivemycin A. We concluded that the mycolic acid localized in the outer cell layer of the inducer bacterium influences secondary metabolism inStreptomyces, and this activity is a result of the direct interaction between the mycolic acid-containing bacteria andStreptomyces. We used these results to develop a new coculture method, called the combined-culture method, which facilitates the screening of natural products.


2019 ◽  
Vol 36 (9) ◽  
pp. 1233-1236 ◽  
Author(s):  
Jens Nielsen

Natural product biosynthesis is inherently linked with the primary metabolism in terms of providing precursors and co-factors.


Sign in / Sign up

Export Citation Format

Share Document