scholarly journals A promising carbon fiber-based photocatalyst with hierarchical structure for dye degradation

RSC Advances ◽  
2017 ◽  
Vol 7 (36) ◽  
pp. 22234-22242 ◽  
Author(s):  
Chen Gu ◽  
Sen Xiong ◽  
Zhaoxiang Zhong ◽  
Yong Wang ◽  
Weihong Xing

To fabricate a novel photocatalyst, ZnO seeds were uniformly deposited on carbon fibers via atomic layer deposition followed by hydrothermal growth of ZnO nanorods, then Pt nanoparticles were deposited by DC magnetron sputtering.

2021 ◽  
Author(s):  
Marwa Atwa ◽  
Xiaoan Li ◽  
Zhaoxuan Wang ◽  
Samuel Dull ◽  
Shicheng Xu ◽  
...  

A self-supported, binder-free and scalable nanoporous carbon scaffold serves as an excellent host for the efficient and uniform atomic layer deposition of Pt nanoparticles, showing exemplary performance as a cathode catalyst layer in a PEM fuel cell.


2019 ◽  
Vol 16 (2) ◽  
pp. 855-862 ◽  
Author(s):  
Yang-Chih Hsueh ◽  
Chia-Te Hu ◽  
Chih-Chieh Wang ◽  
Chueh Liu ◽  
Tsong-Pyng Perng

2015 ◽  
Vol 27 (3) ◽  
pp. 034001 ◽  
Author(s):  
Adriaan J M Mackus ◽  
Matthieu J Weber ◽  
Nick F W Thissen ◽  
Diana Garcia-Alonso ◽  
René H J Vervuurt ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1496 ◽  
Author(s):  
Dominik Benz ◽  
Hao Van Bui ◽  
Hubertus T. Hintzen ◽  
Michiel T. Kreutzer ◽  
J. Ruud van Ommen

Photocatalysts for water purification typically lack efficiency for practical applications. Here we present a multi-component (Pt:SiO2:TiO2(P25)) material that was designed using knowledge of reaction mechanisms of mono-modified catalysts (SiO2:TiO2, and Pt:TiO2) combined with the potential of atomic layer deposition (ALD). The deposition of ultrathin SiO2 layers on TiO2 nanoparticles, applying ALD in a fluidized bed reactor, demonstrated in earlier studies their beneficial effects for the photocatalytic degradation of organic pollutants due to more acidic surface Si–OH groups which benefit the generation of hydroxyl radicals. Furthermore, our investigation on the role of Pt on TiO2(P25), as an improved photocatalyst, demonstrated that suppression of charge recombination by oxygen adsorbed on the Pt particles, reacting with the separated electrons to superoxide radicals, acts as an important factor for the catalytic improvement. Combining both materials into the resulting Pt:SiO2:TiO2(P25) nanopowder exceeded the dye degradation performance of both the individual SiO2:TiO2(P25) (1.5 fold) and Pt:TiO2(P25) (4-fold) catalysts by 6-fold as compared to TiO2(P25). This approach thus shows that by understanding the individual materials’ behavior and using ALD as an appropriate deposition technique enabling control on the nano-scale, new materials can be designed and developed, further improving the photocatalytic activity. Our research demonstrates that ALD is an attractive technology to synthesize multicomponent catalysts in a precise and scalable way.


2004 ◽  
Vol 449-452 ◽  
pp. 977-980 ◽  
Author(s):  
S.G. Kim ◽  
Seung Boo Jung ◽  
Ji Hun Oh ◽  
H.J. Kim ◽  
Yong Hyeon Shin

Polycrystalline ZnO thin films were for the first time deposited on SiO2/Si (100) substrate using 2-step deposition; atomic layer deposition (ALD) and RF magnetron sputtering, for Film Bulk Acoustic Resonator (FBAR) applications. The film deposition performed in this study was composed of following two procedures; the 1st deposition was using ALD method and 2nd deposition was using RF magnetron sputtering. The ZnO buffer layer ALD films were deposited using alternating diethylzinc (DEZn)/H2O exposures and ultrahigh purity argon gas for purging. Exposure time of 1 sec and purge time of 23 sec yielded an ALD cycle time. Two-step deposited ZnO films revealed stronger c-axis preferred-orientation than one-step deposited. Therefore, this method could be applied to the FBAR applications, since FBAR devices require high quality of thin films.


Sign in / Sign up

Export Citation Format

Share Document